Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Singular large diffusivity and spatial homogenization in a non homogeneous linear parabolic problem

Loading...
Thumbnail Image

Full text at PDC

Publication date

2005

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Mathematical Sciences
Citations
Google Scholar

Citation

Abstract

We make precise the sense in which spatial homogenization to a constant function in space is attained in a linear parabolic problem when large diffusion in all parts of the domain is assumed. Also interaction between diffusion and boundary flux terms is considered. Our starting point is a detailed analysis of the large diffusion effects on the associated elliptic and eigenvalue problems. Here convergence is shown in the energy space H-1(Omega) and in the space of continuous functions C(Omega). In the parabolic case we prove convergence in the functional space L-infinity((0, T), L-2(Omega)) boolean AND L-2((0, T), H-1(Omega)).

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections