A uniqueness result for a semilinear reaction-diffusion system
Loading...
Download
Full text at PDC
Publication date
1991
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Mathematical Society
Citation
Abstract
Let (u(t, x), v(t, x)) and (uBAR(t, x), vBAR(t, x)) be two nonnegative classical solutions of (S)[GRAPHICS:{ut=Δu+vp, p>0 ; vt=Δv+uq, q>0] in some strip S(T) = (0, T) x R(N), where 0 < T ≤ ∞, and suppose that u(0, x) = uBAR(0, x), v(0, x) = vBAR(0, x), where u(0, x) and v(0, x) are continuous, nonnegative, and bounded real functions, one of which is not identically zero. Then one has u(t, x) = uBAR(t, x), v(t, x) = vBAR(t, x) in S(T). If pq ≥ 1, the result is also true if u(0, x) = v(0, x) = 0. On the other hand, when 0 < pq < 1, the set of solutions of (S) with zero initial values is given by u(t; s) = c1(t - s)+(p+1)/(1-pq), v(t; s) = c2(t - s)+(q+1)/(1-qp), where 0 ≤ s ≤ t, c1 and c2 are two positive constants depending only on p and q, and (ξ)+ = max{ξ,0}.






