Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On SO(3)-bundles over the Wolf spaces

dc.contributor.authorFernández, Marisa
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorSánchez, Jonatan
dc.date.accessioned2023-06-17T13:21:07Z
dc.date.available2023-06-17T13:21:07Z
dc.date.issued2019
dc.description.abstractWe study the formality of the total space of principal SU(2) and SO(3)bundles over a Wolf space, that is a symmetric positive quaternionic K¨ahler manifold. We apply this to conclude that all the 3-Sasakian homogeneous spaces are formal. We also determine the principal SU(2) and SO(3)-bundles over the Wolf spaces whose total space is non-formal.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)/FEDER
dc.description.sponsorshipGobierno Vasco
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/54862
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13198
dc.language.isospa
dc.page.final31
dc.page.initial1
dc.relation.projectID(MTM2014-54804-P; MTM2015-63612-P)
dc.relation.projectIDIT1094-16
dc.rights.accessRightsopen access
dc.subject.cdu514.7
dc.subject.keyword3-Sasakian homogeneous spaces
dc.subject.keyword3-sphere bundles
dc.subject.keywordWolf spaces
dc.subject.keywordformality
dc.subject.keywordMassey products.
dc.subject.ucmGeometría diferencial
dc.subject.ucmTopología
dc.subject.unesco1204.04 Geometría Diferencial
dc.subject.unesco1210 Topología
dc.titleOn SO(3)-bundles over the Wolf spaces
dc.typejournal article
dcterms.references[1] D. V. Alekseevski, Classi�cation of quaternionic spaces with solvable group of motions, Math. USSR-Izv. 9 (1975), 297-339. [2] M. Amann, Positive Quaternion K�ahler Manifolds, Ph. D. thesis, Wilhelms-Universit�at Münster, 2009. [3] M. Amann and V. Kapovitch, On �brations with formal elliptic �bers, Adv. Math. 231 (2012), 2048-2068. [4] M. Amann, Non-formal homogeneous spaces, Math. Z. 274 (2013), 1299-1325. [5] I. Biswas, M. Fernández, V. Muñoz and A. Tralle, On formality of Sasakian manifolds, J. Topol. 9 (2016), 161-180. [6] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, volume 203 of Progress in Mathematics. Birkh�auser Boston, Inc., Boston, MA, second edition, 2010. [7] A. Borel, Sur la cohomologie des espaces �fibrés principaux et des espaces homogèntes de groupes de Lie compacts, Ann. Math. 57 (1953), 115-207. [8] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538. [9] C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford Univ. Press, Oxford, 2007. [10] C. P. Boyer and K. Galicki, 3-Sasakian manifolds, Surveys in differential geometry: essays on Einstein manifolds, 123-184, Surv. Differ. Geom., VI, Int. Press, Boston, MA, 1999. [11] C. P. Boyer, K. Galicki and B. M. Mann, The geometry and topology of 3-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183-220. [12] C. P. Boyer, K. Galicki, B. M. Mann and E. G. Rees, Compact 3-Sasakian 7-manifolds with arbitrary second Betti number, Invent. Math. 131 (1998), 321-344. [13] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Math. vol. 98, Springer, 1985. [14] E. Cartan, Sur certaines formes Riemanniennes remarquables des géométries à groupe fondamental simple. (French) Ann. Sci. École Norm. Sup. 44 (1927), 345-467. [15] D. Crowley and J. Nordstr�om, The rational homotopy type of (n-1)-connected (4n-1)-manifolds, arxiv: 1505.04184v1 [math.AT]. [16] P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245{274. [17] Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Springer, 2002. [18] M. Fernández, S. Ivanov and V. Muñoz, Formality of 7-dimensional 3-Sasakian manifolds, to appear in Ann. Sc. Norm. Super. Pisa Cl. Sci., arxiv: 1511.08930 [math.DG]. [19] M. Fernández and V. Muñoz, Formality of Donaldson submanifolds, Math. Z. 250 (2005), 149-175. [20] K. Galicki, S. Salamon, On Betti Numbers of 3-Sasakian Manifolds, Geom. Ded. 63 (1996), 45-68. [21] W. Greub, S. Halperin and R. Vanstone, Connections, curvature, and cohomology, Academic Press, New York, 1976. [22] P. Griffiths and J. W. Morgan, Rational homotopy theory and differential forms, Progress in Math. 16, Birkh�auser, 1981. [23] S. Halperin, Lectures on minimal models, Mém. Soc. Math. France 230, 1983. [24] S. Ishihara, Quaternion K�ahler manifolds, J. Differ. Geom. 9 (1974), 483-500. [25] S. Ishihara, M. Konishi, Fibred Riemannian spaces with Sasakian 3-structure, Differential Geom., in honor of K. Yano, Kinokuniya, Tokyo 1972, 179-194. [26] K. Ishitoya, Integral cohomology ring of the symmetric space EII, J. Math. Kyoto Univ. 17 (1977), 375-397. [27] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), 225-243. [28] M. Karoubi, K-theory. An introduction, Grundlehren der Mathematischen Wissenschaften 226, Springer,1978. xviii+308 pp. [29] T. Kashiwada, A note on Riemannian space with Sasakian 3-structure, Nat. Sci. Reps. Ochanomizu Univ., 22 (1971), 1-2. [30] M. Konishi, On manifolds with Sasakian 3-structure over quaternion Kaehler manifolds, Kodai Math. Sem. Rep. 26 (1975), 194-200. [31] C. LeBrun and S. Salamon, Strong rigidity of positive quaternion-K�ahler manifolds, Invent. Math. 118 (1994), 109-132. [32] J. Milnor, J. Stasheff, Characteristic classes, Annals of Mathematics Studies. Princeton University Press, 1974. [33] G. Lupton, Variations on a conjecture of Halperin, in: Homotopy and Geometry, Warsaw 1997, Banach Center Publ. 45 (1998), 115-135. [34] V. Muñoz, A. Tralle, Simply connected K-contact and Sasakian manifolds of dimension 7, Math. Z. 281 (2015), 457-470. [35] T. Nagano and M. Takeuchi, Cohomology of quaternionic K�ahler manifolds, J. Fac. Sci. Univ. Tokyo Sect IA Math. 34 (1987), 57-63. [36] M. Nakagawa, The mod 2 cohomology ring of the symmetric space EV I, J. Math. Kyoto Univ. 41 (2001), 535-556. [37] M. Nakagawa, The integral cohomology ring of E8 =T , Proc. Japan Acad. 86 (2010), 64-68. [38] J. Neisendorfer and T.J. Miller, Formal and coformal spaces, Illinois. J. Math. 22 (1978), 565-580. [39] P. Piccinni, On the cohomology of some exceptional symmetric spaces, arXiv:1609.06881 [math.DG]. [40] A. Roig and M. Saralegi, Minimal models for non-free circle actions, Illinois J. Math. 44 (2000),784-820. [41] S. Salamon, Quaternionic K�ahler manifolds, Invent. Math. 67 (1982), 143-171. [42] S. Salamon, Index theory ans special geometries, Luminy Meeting Spin Geometry and Analysis on Manifolds, Oct. 2014, https://nms.kcl.ac.uk/simon.salamon/T/luminy.pdf (see also the conference talks https://nms.kcl.ac.uk/simon.salamon/T/ober.pdf and http://calvino.polito.it/esalamon/T/levico.pdf) [43] D. Sullivan, Infi�nitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 269-331. [44] S. Tanno, Remarks on a triple of K-contact structures, Tôhoku Math. J. 48 (1996), 519-531. [45] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, manifolds with positive �rst Chern class, J. Math. Mech. 14 (1965), 1033-1047.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VMuñoz109preprint.pdf
Size:
431.38 KB
Format:
Adobe Portable Document Format

Collections