Minimum time search in uncertain dynamic domains with complex sensorial platforms
dc.contributor.author | Lanillos Pradas, Pablo | |
dc.contributor.author | Besada Portas, Eva | |
dc.contributor.author | López Orozco, José Antonio | |
dc.contributor.author | Cruz García, Jesús Manuel de la | |
dc.date.accessioned | 2023-06-19T13:31:43Z | |
dc.date.available | 2023-06-19T13:31:43Z | |
dc.date.issued | 2014-08-04 | |
dc.description | © 2014 by the authors; licensee MDPI, Basel, Switzerland. This work has been supported by the Spanish Ministery of Education and Science (under the research grants DPI2006-15661-C02, DPI2009-14552-C02 and DPI2013-46665-C02) and by the EADS (CASSIDIAN) SAVIER AER-30459 project. The authors want to thank Juan A. Besada for his fruitful discussions about the sensor models. | |
dc.description.abstract | The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Spanish Ministery of Education and Science | |
dc.description.sponsorship | EADS (CASSIDIAN) SAVIER | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/29355 | |
dc.identifier.doi | 10.3390/s140814131 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.officialurl | http://dx.doi.org/10.3390/s140814131 | |
dc.identifier.relatedurl | http://www.mdpi.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33944 | |
dc.issue.number | 8 | |
dc.journal.title | Sensors | |
dc.language.iso | eng | |
dc.page.final | 14179 | |
dc.page.initial | 14131 | |
dc.publisher | MDPI AG | |
dc.relation.projectID | DPI2006-15661-C02 | |
dc.relation.projectID | DPI2009-14552-C02 | |
dc.relation.projectID | DPI2013-46665-C02 | |
dc.relation.projectID | AER-30459 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 004 | |
dc.subject.keyword | Multi-agent systems | |
dc.subject.keyword | Bayesian search theory | |
dc.subject.keyword | Minimum time search | |
dc.subject.keyword | Cross entropy optimization. | |
dc.subject.ucm | Programación de ordenadores (Física) | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 1203.17 Informática | |
dc.title | Minimum time search in uncertain dynamic domains with complex sensorial platforms | |
dc.type | journal article | |
dc.volume.number | 14 | |
dcterms.references | 1. Stone, L.D., Theory of Optimal Search, Academic Press, New York, NY, USA, 1975. 2. Koopman, B., Search and Screening: General Principles with Historical Applications, Pergamon Press, Oxford, UK, 1980. 3. Smallwood, R.D., Sondik, E.J., The Optimal Control of Partially Observable Markov Processes over a Finite Horizon, Oper. Res., 1973, 21, 1071–1088. 4. Kaelbling, L.P., Littman, M.L., Cassandra, A.R., Planning and acting in partially observable stochastic domains, Artif. Intell., 1998, 101, 99–134. 5. Feldbaum, A.A., Dual control theory I–II, Automn Remote Control, 1961, 21, 874–880. 6. Feldbaum, A.A., Dual control theory III–IV, Automn Remote Control, 1961, 22, 1033–1039. 7. Grocholsky, B., Makarenko, A., Durrant-Whyte, H., Information-theoretic coordinated control of multiple sensor platforms, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’03), Taipei, Taiwan, 14–19 September 2003, pp. 1521–1526. 8. Bourgault, F., Furukawa, T., Durrant-Whyte, H.F., Decentralized Bayesian Negotiation for Cooperative Search, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), Sendai, Japan, 28 September–2 October 2004. 9. Furukawa, T., Bourgault, F., Lavis, B., Durrant-Whyte, H.F., Recursive Bayesian search-and-tracking using coordinated UAVs for lost targets, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May 2006, pp. 2521–2526. 10. Bessire, P., Laugier, C., Siegwart, R., Probabilistic Reasoning and Decision Making in Sensory-Motor Systems, 1st ed., Springer, Berlin/Heidelberg, Germany, 2008. 11. Yang, Y., Minai, A., Polycarpou, M., Decentralized cooperative search in UAV’s using opportunistic learning, In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Montery, CA, USA, 5 August 2002. 12. Lanillos, P., Besada-Portas, E., Pajares, G., Ruz, J.J., Minimum time search for lost targets using cross entropy optimization, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012, pp. 602–609. 13. Lanillos, P., Yáñez Zuluaga, J., Ruz, J.J., Besada-Portas, E., A Bayesian Approach for Constrained Multi-Agent Minimum Time Search in Uncertain Dynamic Domains, In Proceedings of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference (GECCO ’13), Amsterdam, The Netherlands, 6–10 July 2013, ACM, New York, NY, USA, 2013, pp. 391–398. 14. Martínez, S., Bullo, F., Optimal sensor placement and motion coordination for target tracking, Automática, 2006, 42, 661–668. 15. Hoffmann, G., Tomlin, C., Mobile Sensor Networks Control Using Mutual Information Methods and Particle Filters, IEEE Trans. Autom. Control, 2012, 55, 32–47. 16. Grocholsky, B., Keller, J., Kumar, V., Pappas, G., Cooperative air and ground surveillance, IEEE Robot. Autom. Mag., 2006, 13, 16–25. 17. Eagle, J.N., The Optimal Search for a Moving Target When the Search Path is Constrained, Oper. Res., 1984, 32, 1107–1115. 18. Eagle, J., Yee, J., An Optimal Branch-and-Bound Procedure for the Constrained Path, Movin Target Search Problem. Oper. Res., 1990, 38, 110–114. 19. Dell, R., Eagle, J., Martins, G., Santos, A., Using Multiple Searchers in Constrained-Path, Moving-Target Search Problems, Nav. Res. Logist., 1996, 43, 463–480. 20. Washburn, A., On a Search for a Moving Target, Nav. Res. Logist., 1980, 27, 315–321. 21. Bourgault, F., Furukawa, T., Durrant-Whyte, H.F., Optimal Search for a Lost Target in a Bayesian World, In Field and Service Robotics, Springer, Berlin/Heidelberg, Germany, 2003, pp. 209–222. 22. Mathews, G., Durrant-Whyte, H., Prokopenko, M., Asynchronous gradient-based optimisation for team decision making, In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007, pp. 3145–3150. 23. Lau, H., Huang, S., Dissanayake, G., Discounted mean bound for the optimal searcher path problem with non-uniform travel times, Eur. J. Oper. Res., 2008, 180, 383–397. 24. Gan, S.K., Sukkarieh, S., Multi-UAV Target Search using Explicit Decentralized Gradient-Based Negotiation, In Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–8 May 2010. 25. Sarmiento, A., Murrieta-Cid, R., Hutchinson, S., An Efficient Motion Strategy to Compute Expected-Time Locally Optimal Continuous Search Paths in Known Environments, Adv. Robot, 2009, 23, 1533–1560. 26. Sato, H., Royse, J., Path optimization for the resource-constrained searcher, Nav. Res. Logist, 2010, 57, 422–440. 27. Li, S., Guo, Y., Distributed source seeking by cooperative robots, All-to-all and limited communications, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012, pp. 1107–1112. 28. Azuma, S., Sakar, M.S., Pappas, G.J., Stochastic Source Seeking by Mobile Robots, IEEE Trans. Autom. Control, 2012, 57, 2308–2321. 29. Han, J., Chen, Y., Multiple UAV Formations for Cooperative Source Seeking and Contour Mapping of a Radiative Signal Field, J. Intell. Robot. Syst., 2014, 74, 323–332. 30. Rubinstein, R.Y., Kroese, D.P., The Cross Entropy Method, A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning, Springer: New York, NY, USA, 2004. 31. Ferreira, J.F., Dias, J., Probabilistic Approaches to Robotic Perception. In Springer Tracts in Advanced Robotics, Springer: Switzerland, 2014, Volume 91. 32. Mathews, G., Asynchronous Decision Making for Decentralised Autonomous Systems, Ph.D. Thesis, The University of Sydney, Sydney, Australia, 2008. 33. Trummel, K.E., Weisinger, J.R., The Complexity of the Optimal Searcher Path Problem, Oper. Res., 1986, 34, 324–327. 34. Pineau, J., Gordon, G., Thrun, S., Anytime point-based approximations for large POMDPs, J. Artif. Int. Res., 2006, 27, 335–380. 35. Amato, C., Bernstein, D.S., Zilberstein, S., Optimizing Fixed-Size Stochastic Controllers for POMDPs and Decentralized POMDPs, Auton. Agents Multi-Agent Syst., 2010, 21, 293–320. 36. Shani, G., Pineau, J., Kaplow, R., A survey of point-based POMDP solvers, Auton. Agents Multi-Agent Syst., 2012, 27, 1–51. 37. Vlassis, N., Toussaint, M., Model free reinforcement learning as mixture learning, In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009, pp. 1081–1088. 38. Hsu, D., Lee, W., Rong, N., A Point-Based POMDP Planner for Target Tracking, In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008), Pasadena, CA, USA, 19–23 May 2008. 39. Miller, A., Harris, Z.A., Chong, E.P., A POMDP Framework for Coordinated Guidance of Autonomous UAVs for Multitarget Tracking, J. Signal Process., 2009, 2009, 724597. 40. Ragi, S., Chong, E., UAV Path Planning in a Dynamic Environment via Partially Observable Markov Decision Process, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, 2397–2412. 41. Chanel, C.P.C., Teichteil-Knigsbuch, F., Lesire, C., Multi-Target Detection and Recognition by UAVs Using Online POMDPs, In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013. 42. Deisenroth, M.P., Neumann, G., Peters, J., A Survey on Policy Search for Robotics, Found. Trends Robot., 2011, 2, doi:10.1561/2300000021. 43. Li, S., Li, Y., Liu, B., Murray, T., Model-free control of Lorenz chaos using an approximate optimal control strategy, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, 4891–4900. 44. Powell, W.B., Approximate Dynamic Programming: Solving the Curses of Dimensionality, John Wiley & Sons, Hoboken, NJ, USA, 2007. 45. Neapolitan, R.E., Learning Bayesian Networks, Prentince Hall: Upper Saddle River, NJ, USA 2003. 46. Budge, M., Introduction to Radar Systems, Available online: http://www.ece.uah.edu/courses/material/EE619-2011/ (accessed on 28 July 2014). 47. Swerling, P., Probability of Detection for Fluctuating Targets, IRE Trans., 1960, IT-6, 269–308. 48. Skolnik, M., Radar Handbook, McGraw-Hill: New York, NY, USA, 1990. 49. Burden, R., Faires, J., Reynolds, A.C., Numerical Analysis, Prindle, Weber & Schmidt: Boston, MA, USA, 1985. 50. Thrun, S., Burgard, W., Fox, D., Probabilistic Robotics; MIT Press Cambridge: Cambridge, MA, USA, 2005, Volume 1. 51. Luenberger, D., Linear and Nonlinear Programming, Addison Wesley: Reading, MA, USA, 1984. 52. Bertsekas, D., Constraint Optimization and Lagrange Multiplier Methods, Athena Scientific: Belmont, MA, USA, 1998. 53. Li, S., Chen, S., Liu, B., Li, Y., Liang, Y., Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks, Neurocomputing, 2012, 91, 1–10. 54. Boukari, D., Fiacco, A.V., Survey of penalty, exact-penalty and multiplier methods from 1968 to 1993. Optimization, 1995, 32, 301–334. 55. Ghosieri, K., Ghannadpour, S.F., Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm, Appl. Soft Comput., 2010, 10, 1096–1107. 56. Furukawa, T., Lavis, B., Durrant-Whyte, H., Parallel grid-based recursive Bayesian estimation using GPU por real-time autonomous navigation, In Proceedings of the IEEE International Conference on Robitcs and Automation, Anchorage, AK, USA, 3–8 May 2010, pp. 316–321. 57. Ferreira, J.F., Lobo, J., Dias, J., Bayesian real-time perception algorithms on GPU, J. Real-Time Image Process, 2011, 6, 171–186. 58. Larrañaga, P., Lozano, J.A., Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic: Norwell, MA, USA, 2001. 59. Lanillos, P., Minimum Time Search of Mobile Targets in Uncertain Environments, Ph.D. Thesis, University Complutense of Madrid, Madrid, Spain, 2013. 60. Papoulis, A., Pillai, S., Probability, Random Variables, and Stochastic Processes, McGraw-Hill Electrical and Electronic Engineering Series, McGraw-Hill: New York, NY, USA, 1991. 61. Feller, W., An Introduction to Probability Theory and Its Applications, John Wiley and Sons: New York, NY, USA, 1971, Volume 2. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 0acc96fe-6132-45c5-ad71-299c9dcb6682 | |
relation.isAuthorOfPublication | 26b95994-f79c-4d7c-8de5-a003d6d2a770 | |
relation.isAuthorOfPublication.latestForDiscovery | 0acc96fe-6132-45c5-ad71-299c9dcb6682 |
Download
Original bundle
1 - 1 of 1