Composition-dependent electronic properties of indium-zinc-oxide elongated microstructures
dc.contributor.author | Bartolomé Vílchez, Javier | |
dc.contributor.author | Maestre Varea, David | |
dc.contributor.author | Cremades Rodríguez, Ana Isabel | |
dc.contributor.author | Amatti, M. | |
dc.contributor.author | Piqueras De Noriega, Francisco Javier | |
dc.date.accessioned | 2023-06-19T13:22:30Z | |
dc.date.available | 2023-06-19T13:22:30Z | |
dc.date.issued | 2013-04 | |
dc.description | © 2012 Acta Materialia Inc. Published by Elsevier Ltd.. This work was supported by MICINN (Projects MAT-2009-07882 and CSD-2009-00013) and by UCMBSCH (Group 910146). JB acknowledges financial support from Universidad Complutense de Madrid. | |
dc.description.abstract | Microrods and hierarchical structures of indium-zinc-oxide (IZO) with different compositions were grown by thermal treatments of mixtures of InN and ZnO powders. In long rods, an increase in Zn content along the growth axis is revealed by energy dispersive spectroscopy. The structures obtained range from Zn-doped indium oxide with a few atomic per cent of Zn, to IZO compounds of the type Zn_kIn_2O_k+3. X-ray photoelectron spectroscopy measurements with spatial resolution show that IZO microstructures degenerate at room temperature, with carrier concentration of the order of 10^20 cm^-3. Electron accumulation has been found for undoped (1 0 0) and (1 1 1) surfaces, whereas depletion of carriers at the surface is observed in IZO samples. The Fermi level position correlates with the Zn concentration at the surface which, taking into account the surface dependence of the ionization potentials, work functions and band gaps, could lead to tunable material properties for device applications. Cathodoluminescence emission intensity is enhanced by the presence of Zn, which induces spectral changes and broadening of the emission band compared with undoped material. The results are discussed in terms of the charge neutrality level and the band structure of the material. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN | |
dc.description.sponsorship | UCM-BSCH | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23696 | |
dc.identifier.doi | 10.1021/jp4007894 | |
dc.identifier.issn | 1359-6454 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.actamat.2012.12.014 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33402 | |
dc.issue.number | 6 | |
dc.journal.title | Acta Materialia | |
dc.language.iso | eng | |
dc.page.final | 1943 | |
dc.page.initial | 1932 | |
dc.publisher | Pergamon-Elsevier Science LTD | |
dc.relation.projectID | MAT-2009-07882 | |
dc.relation.projectID | CSD-2009-00013 | |
dc.relation.projectID | UCMBSCH 910146 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Transparent Conducting Oxides | |
dc.subject.keyword | X-Ray Photoemission | |
dc.subject.keyword | Thin-Films | |
dc.subject.keyword | Optical-Properties | |
dc.subject.keyword | Superlattice Structure | |
dc.subject.keyword | Zno Nanostructures | |
dc.subject.keyword | Nanowires | |
dc.subject.keyword | In_2o_3 | |
dc.subject.keyword | Growth | |
dc.subject.keyword | Surfaces | |
dc.subject.ucm | Física de materiales | |
dc.title | Composition-dependent electronic properties of indium-zinc-oxide elongated microstructures | |
dc.type | journal article | |
dc.volume.number | 61 | |
dcterms.references | [1] Minami T. MRS Bull 2000;25:38. [2] Philips JM, Cava RJ. Appl Phys Lett 1995;67:2246. [3] Kaijo A. Display Imaging 1996;4:143. [4] Hoel CA, Mason TO, Gaillard J-F, Poeppelmeier KR. Chem Mater 2010;22:3569. [5] Hiramatsu H, Seo W-S, Koumoto K. Chem Mater 1998;10:3033. [6] Walsh A, Da Silva JLF, Yan Y, Al-Jassim MM,Wei S-H. Phys Rev B 2009;79:073105. [7] Jie J, Wang G, Han X, Yu Q, Liao Y, Li G, et al. Chem Phys Lett 2004;387:466. [8] Ding Y, Kong XY, Wang ZL. Phys Rev B 004;70:235408. [9] Fan HJ, Fuhrmann B, Scholz R, Himcinschi C, Berger A, Leipner H, et al. Nanotechnology 2006;17:S231. [10] Xu L, Su Y, Chen Y, Xiao H, Zhu L, Zhou Q, et al. J Phys Chem B 2006;110:6637. [11] Li LM, Li CC, Du ZF, Zou BS, Yu HC, Wang YG, et al. Nanotechnology 2007;18:225504. [12] Gao H, Ji H, Zhang X, Lu H, Liang Y. J Vac Sci Technol B 2008;26:585. [13] Alema´n B, Ferna´ndez P, Piqueras J. J Cryst Growth 2010;312:3117. [14] Jie J, Wang G, Han X, Hou JG. J Phys Chem B 2004;108:17027. [15] Na CW, Bae SY, Park J. J Phys Chem B 2005;109:12785. [16] Wu L, Zhang X, Wang Z, Liang Y, Xu H. J Phys D: Appl Phys 2008;41:195406. [17] Alema´n B, Ferna´ndez P, Piqueras J. Appl Phys Lett 2009;95:013111. [18] Hsin CL, He JH, Chen LJ. Appl Phys Lett 2006;88:063111. [19] Zhang W, Jie J, He Z, Tao S, Fan X, Zhou Y, et al. Appl Phys Lett 2008;92:153312. [20] Singh N, Yan C, Lee PS. Sens Actuat B: Chem 2010;150:19. [21] Magdas DA, Cremades A, Piqueras J. Appl Phys Lett 2006;88:113107. [22] Maestre D, Cremades A, Gregoratti L, Piqueras J. J Phys Chem C 2010;114:3411. [23] Bartolome´ J, Maestre D, Amati M, Cremades A, Piqueras J. J Phys Chem C 2011;115:8354. [24] Powell CJ, Jablonski A. NIST Electron effective-attenuation-length Database version 1.3, SRD 82, NIST, Gaithersburg; 2011. [25] Magdas DA, Cremades A, Piqueras J. J Appl Phys 2006;100:094320. [26] Mazzera M, Zha M, Calestani D, Zappettini A, Lazzarini L, Salviati G, et al. Nanotechnology 2007;18:355707. [27] Lao JY, Wen JG, Ren ZF. Nano Lett 2002;2:1287. [28] Lao JY, Huang JY, Wang DZ, Ren ZF. J Mater Chem 2004;14:770. [29] Wen JG, Lao JY, Wang DZ, Kyaw TM, Foo YL, Ren ZF. Chem Phys Lett 2003;372:717. [30] Ortega Y, Ferna´ndez P, Piqueras J. J Cryst Growth 2009;311:3231. [31] Ortega Y, Ferna´ndez P, Piqueras J. J Nanosci Nanotechnol 2010;10:502. [32] Kumar B, Gong H, Akkipeddi R. J Appl Phys 2005;97:063706. [33] Erhart P, Klein A, Egdell RG, Albe K. Phys Rev B 2007;75:153205. [34] Klein A. Appl Phys Lett 2000;77:2009. [35] Brinzari V, Korotcenkov G, Matolin V. Appl Surf Sci 2005;243: 335. [36] Morales EH, He Y, Vinnichenko M, Delley B, Diebold U. New J Phys 2008;10:125030. [37] Morales EH, Diebold U. Appl Phys Lett 2009;95:253105. [38] Walsh A, Richard C, Catlow A. J Mater Chem 2010;20:10438. [39] King PDC, Veal TD, Fuchs F, Wang ChY, Payne DJ, Bourlange A, et al. Phys Rev B 2009;79:205211. [40] Lüth H. Surfaces and interfaces of solid materials. Berlin: Springer Verlag; 1997. [41] Gassenbauer Y, Schafranek R, Klein A, Zafeiratos S, Ha¨vecker M, Knop-Gericke A, et al. Phys Rev B 2006;73:245312. [42] King PDC, Veal TD, Payne DJ, Bourlange A, Egdell RG, McConville CF. Phys Rev Lett 2008;101:116808. [43] Mo¨nch W. Semiconductor surfaces and interfaces. Berlin: Springer Verlag; 2011. [44] Noguchi M, Hirakawa K, Ikoma T. Phys Rev Lett 1991;66:2243. [45] Mahboob I, Veal TD, McConville CF, Lu H, Schaff WJ. Phys Rev Lett 2004;92:036804. [46] Egdell RG, Rebane J, Walker TJ, Law DSL. Phys Rev B 1999;59:1792. [47] Walsh A. Appl Phys Lett 2011;98:261910. [48] Fan JCC, Goodenough JB. J Appl Phys 1977;48:3524. [49] Wang RX, Beling CD, Fung S, Djurisic AB, Ling CC, Li S. J Appl Phys 2005;97:033504. [50] Kim SY, Hong K, Lee JL, Choi KH, Song KH, Ahn KC. Solid-State Electron 2008;52:1. [51] Hamberg I, Granqvist CG. Thin Solid Films 1983;105:L83. [52] Hamberg I, Granqvist CG. J Appl Phys 1986;60:R123. [53] Jin Z-C, Hamberg I, Granqvist CG. J Appl Phys 1988;64:5117. [54] Marcel C, Naghavi N, Couturier G, Salardenne J, Tarascon JM. J Appl Phys 2002;91:4291. [55] Kamiya T, Kawasaki M. MRS Bull 2008;33:1061. [56] Lim WT, Norton DP, Jang JH, Craciun V, Pearton SJ, Ren F. Appl Phys Lett 2008;92:122102. [57] Zhang WF, He ZB, Yuan GD, Jie JS, Luo LB, Zhang XJ, et al. Appl Phys Lett 2009;94:123103. [58] Ambrosini A, Malo S, Poeppelmeier KR, Lane MA, Kannewurf CR, Mason TO. Chem Mater 2002;14:58. [59] Li C, Bando Y, Nakamura M, Onoda M, Kimizuka N. J Solid State Chem 1998;139:347. [60] Yan Y, Da Silva JLF, Wei S-H, Al-Jassim M. Appl Phys Lett 2007;90:261904. [61] Richter B, Kuhlenbeck H, Freund H-J, Bagus PS. Phys Rev Lett 2004;93:026805. [62] Sengar SK, Mehta BR, Gupta G. Appl Phys Lett 2011;98:193115. [63] Gassenbauer Y, Klein A. J Phys Chem B 2006;110:4793. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 584d700c-79ff-4e20-a35d-519d0958238e | |
relation.isAuthorOfPublication | 43cbf291-2f80-4902-8837-ea2a9ffaa702 | |
relation.isAuthorOfPublication | da0d631e-edbf-434e-8bfd-d31fb2921840 | |
relation.isAuthorOfPublication | 68dabfe9-5aec-4207-bf8a-0851f2e37e2c | |
relation.isAuthorOfPublication.latestForDiscovery | 584d700c-79ff-4e20-a35d-519d0958238e |
Download
Original bundle
1 - 1 of 1