A new expert system for greenness identification in agricultural images
dc.contributor.author | Cruz García, Jesús Manuel de la | |
dc.contributor.author | Romeo Granados, Juan | |
dc.contributor.author | Pajares Martínsanz, Gonzalo | |
dc.contributor.author | Montalvo Martínez, Martin | |
dc.contributor.author | Guerrero Hernández, José Miguel | |
dc.contributor.author | Guijarro Mata-García, María | |
dc.date.accessioned | 2023-06-19T13:21:50Z | |
dc.date.available | 2023-06-19T13:21:50Z | |
dc.date.issued | 2013-05 | |
dc.description | © 2012 Elsevier Ltd. The research leading to these results has been funded by the European Union's Seventh Framework Programme [FP7/2007-2013] under Grant Agreement No. 245986 in the Theme NMP-2009-3.4-1 (Automation and robotics for sustainable crop and forestry management). The authors wish also to acknowledge to the project AGL2011-30442-C02-02, supported by the Ministerio de Economia y Competitividad of Spain within the Plan Nacional de I+D+i. | |
dc.description.abstract | It is well-known that one important issue emerging strongly in agriculture is related with the automation of tasks, where camera-based sensors play an important role. They provide images that must be conveniently processed. The most relevant image processing procedures require the identification of green plants, in our experiments they comes from barley and maize fields including weeds, so that some type of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. The images come from outdoor environments, which are affected for a high variability of illumination conditions because of sunny or cloudy days or both with high rate of changes. Several indices have been proposed in the literature for greenness identification, but under adverse environmental conditions most of them fail or do not work properly. This is true even for camera devices with auto-image white balance. This paper proposes a new automatic and robust Expert System for greenness identification. It consists of two main modules: (1) decision making, based on image histogram analysis and (2) greenness identification, where two different strategies are proposed, the first based on classical greenness identification methods and the second inspired on the Fuzzy Clustering approach. The Expert System design as a whole makes a contribution, but the Fuzzy Clustering strategy makes the main finding of this paper. The system is tested for different images captured with several camera devices. (C) 2012 Elsevier Ltd. All rights reserved. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea. FP7 | |
dc.description.sponsorship | Ministerio de Economía y Competitividad of Spain within the Plan Nacional de I+D+i | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22193 | |
dc.identifier.doi | 10.1016/j.eswa.2012.10.033 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.eswa.2012.10.033 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33327 | |
dc.issue.number | 6 | |
dc.journal.title | Expert Systems with Applications | |
dc.language.iso | eng | |
dc.page.final | 2286 | |
dc.page.initial | 2275 | |
dc.publisher | Pergamon-Elsevier Science LTD | |
dc.relation.projectID | RHEA (245986) | |
dc.relation.projectID | NMP-2009-3.4-1 | |
dc.relation.projectID | AGL2011-30442-C02-02 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 004 | |
dc.subject.keyword | Environmentally Adaptive Segmentation | |
dc.subject.keyword | Threshold Selection | |
dc.subject.keyword | Digital Images | |
dc.subject.keyword | Maize Fields | |
dc.subject.keyword | Color | |
dc.subject.keyword | Vegetation | |
dc.subject.keyword | Algorithm | |
dc.subject.keyword | Pressure | |
dc.subject.keyword | Features | |
dc.subject.keyword | Plant. | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 1203.17 Informática | |
dc.title | A new expert system for greenness identification in agricultural images | |
dc.type | journal article | |
dc.volume.number | 40 | |
dcterms.references | Avci, E., & Avci, D. (2009). An expert system based on fuzzy entropy for automatic threshold selection in image process. Expert Systems with Applications, 36(2), 3077–3085. Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. New York, NY, USA: Plenum Press. Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75, 337–346. Burgos-Artizzu, X. P., Ribeiro, A., Tellaeche, A., Pajares, G., & Fernández-Quintanilla, C. (2009). Improving weed pressure assessment using digital images from an experience-based reasoning approach. Computers and Electronics in Agriculture, 65, 176–185. Davies, G., Casady, W., & Massey, R. (1998). Precision agriculture: An introduction. Water Quality Focus Guide (WQ450, Available from: http://extension.missouri. edu/explorepdf/envqual/wq0450.pdf). Duda, R. O., Hart, P. E., & Stork, D. S. (2000). Pattern classification. Wiley. Gebhardt, S., & Kaühbauch, W. A. (2007). A new algorithm for automatic Rumex obtusifolius detection in digital image using colour and texture features and the influence of image resolution. Precision Agriculture, 8(1), 1–13. Gebhardt, S., Schellberg, J., Lock, R., & Kaühbauch, W. A. (2006). Identification of broad-leaved dock (Rumex obtusifolius L.) on grassland by means of digital image processing. Precision Agriculture, 7(3), 165–178. Gée, Ch., Bossu, J., Jones, G., & Truchetet, F. (2008). Crop/weed discrimination in perspective agronomic images. Computers and Electronics in Agriculture, 60, 49–59. González, R. C., & Woods, R. E. (2008). Digital image processing. Upper Saddle River, NJ: Pearson Prentice Hall. Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support vector machines for crop/weeds identification in maize fields. Expert Systems with Applications, 39, 11149–11155. Guijarro, M., Pajares, G., Riomoros, I., Herrera, P. J., Burgos-Artizzu, X. P., & Ribeiro, A. (2011). Automatic segmentation of relevant textures in agricultural images.Computers and Electronics in Agriculture, 75, 75–83. Hague, T., Tillet, N., & Wheeler, H. (2006). Automated crop and weed monitoring in widely spaced cereals. Precision Agriculture, 1(1), 95–113. Holub, O., & Ferreira, S. T. (2006). Quantitative histogram analysis of images. Computer Physics Communications, 175, 620–623. Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system using machine vision. In The 2003 IEEE/ASME international conference on advanced intelligent mechatronics. Kirk, K., Andersen, H. J., Thomsen, A. G., & Jørgensen, J. R. (2009). Estimation of leaf area index in cereal crops using red–green images. Biosystems Engineering,104, 308–317. Ling, P. P., & Ruzhitsky, V. N. (1996). Machine vision techniques for measuring the canopy of tomato seedling. Journal Agricultural Engineering Research, 65(2), 85–95. López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research, 51, 1–11. Luscier, J. D., Thompson, W. L., Wilson, J. M., Gorham, B. E., & Dragut, L. D. (2006). Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Frontiers in Ecology and the Environment, 4(8), 408–413. Meyer, G. E., & Camargo-Neto, J. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture,63, 282–293. Meyer, G. E., Camargo-Neto, J., Jones, D. D., & Hindman, T. W. (2004). Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Computers and Electronics in Agriculture, 42, 161–180. Meyer, G. E., Hindman, T. W., & Lakshmi, K. (1998). Machine vision detection parameters for plant species identification. Bellingham, WA: SPIE. Montalvo, M., Pajares, G., Guerrero, J. M., Romeo, J., Guijarro, M., Ribeiro, A., et al. (2012). Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems with Applications, 39, 11889–11897. Neto, J. C. (2004). A combined statistical – soft computing approach for classification and mapping weed species in minimum tillage systems. Lincoln, NE: University of Nebraska. Onyango, C. M., & Marchant, J. A. (2003). Segmentation of row crop plants from weeds using colour and morphology. Computers and Electronics in Agriculture, 39, 141–155. Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Transactions on System Man and Cybernetics, 9, 62–66. Pajares, G., & de la Cruz, J. M. (2004). A wavelet-based image fusion tutorial. Pattern Recognition, 37, 1855–1872. Reid, J. F., & Searcy, S. W. (1987). Vision-based guidance of an agricultural tractor. IEEE Control Systems, 7(12), 39–43. Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., & García-Alegre, M.C. (2005). Development of an image analysis system for estimation of weed. In Proceedings of the fifth European conference on, precision agriculture (5ECPA) (pp. 169–174). Ruiz-Ruiz, G., Gómez-Gil, J., & Navas-Gracia, L. M. (2009). Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm(EASA). Computers and Electronics in Agriculture, 68, 88–96. Shrestha, D. S., Steward, B. L., & Birrell, S. J. (2004). Video processing for early stage maize plant detection. Biosystems Engineering, 89(2), 119–129. Tellaeche, A., Burgos-Artizzu, X. P., Pajares, G.,Ribeiro, A. (2008). A vision-based method for weeds identification through the Bayesian decision theory. Pattern Recognition, 41, 521–530. Tellaeche, A., Burgos-Artizzu, X., Pajares, G., Ribeiro, A., & Fernández-Quintanilla, C.(2008). A new vision-based approach to differential spraying in precision agriculture. Computers and Electronics in Agriculture, 60(2), 144–155. The Mathworks. (2012). Available from: http://www.mathworks.com/. Tian, L. F., & Slaughter, D. C. (1998). Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture, 21, 153–168. Woebbecke, D. M., Meyer, G. E., von Bargen, K., & Mortensen, D. A. (1995). Shape features for identifying young weeds using image analysis. Transactions of the American Society of Agricultural Engineers, 38(1), 271–281. Zheng, L., Shi, D., & Zhang, J. (2010). Segmentation of green vegetation of crop canopy images based on mean shift and Fisher linear discriminate. Pattern Recognition Letters, 31(9), 920–925. Zheng, L., Zhang, J., & Wang, Q. (2009). Mean-shift-based color segmentation of images containing green vegetation. Computers and Electronics in Agriculture, 65, 93–98. Zimmermann, H. J. (1991). Fuzzy set theory and its applications. Norwell, MA, USA: Kluwer Academic. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 878e090e-a59f-4f17-b5a2-7746bed14484 | |
relation.isAuthorOfPublication | d5518066-7ea8-448c-8e86-42673e11a8ee | |
relation.isAuthorOfPublication.latestForDiscovery | 878e090e-a59f-4f17-b5a2-7746bed14484 |
Download
Original bundle
1 - 1 of 1