Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

New upper bounds for the constants in the Bohnenblust–Hille inequality

dc.contributor.authorPellegrino, Daniel
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:26:09Z
dc.date.available2023-06-20T00:26:09Z
dc.date.issued2012
dc.description.abstractA classical inequality due to Bohnenblust and Hille states that for every positive integer m there is a constant C(m) > 0 so that (Sigma(N)(i1...., im=1) vertical bar U(e(i1), ..., e(im))vertical bar(2m/m+1))(m+1/2m) <= C(m)parallel to U parallel to for every positive integer N and every m-linear mapping U : l(infinity)(N) x ... x l(infinity)(N) -> C, where C(m) = m(m+1/2m)2(m-1/2). The value of C(m) was improved to C(m) = 2(m-1/2) by S. Kaijser and more recently H. Queffelec and A. Defant and P. Sevilla-Peris remarked that C(m) = (2/root pi)(m-1) also works. The Bohnenblust-Hille inequality also holds for real Banach spaces with the constants C(m) = 2(m-1/2). In this note we show that a recent new proof of the Bohnenblust-Hille inequality (due to Defant, Popa and Schwarting) provides, in fact, quite better estimates for C(m) for all values of m is an element of N. In particular, we will also show that, for real scalars, if m is even with 2 <= m <= 24, then C(R,m) = 2(1/2) C(R,m/2). We will mainly work on a paper by Defant, Popa and Schwarting, giving some remarks about their work and explaining how to, numerically, improve the previously mentioned constants.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipCNPq
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/19974
dc.identifier.doi10.1016/j.jmaa.2011.08.004
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X11007402
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42562
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final307
dc.page.initial300
dc.publisherElsevier
dc.relation.projectIDGrant 620108/2008-8
dc.relation.projectIDgrant MTM2009-07848.
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordAbsolutely summing operators
dc.subject.keywordBohnenblust–Hille Theorem
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleNew upper bounds for the constants in the Bohnenblust–Hille inequality
dc.typejournal article
dc.volume.number386
dcterms.referencesO. Blasco, G. Botelho, D. Pellegrino, P. Rueda, Summability of multilinear mappings: Littlewood, Orlicz and beyond, Monatsh. Math. 163 (2011) 131–147. H.F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931) 600–622. F. Bombal, D. Pérez-García, I. Villanueva, Multilinear extensions of Grothendieck’s theorem, Q. J. Math. 55 (2004) 441–450. G. Botelho, H.A. Braunss, H. Junek, D. Pellegrino,Inclusions and coincidences for multiple summing multilinear mappings, Proc. Amer. Math. Soc. 137 (2009) 991–1000. G. Botelho, C. Michels, D. Pellegrino, Complex interpolation and summability properties of multilinear operators, Rev. Mat. Complut. 23 (2010) 139–161. A. Defant, K. Floret, Tensor Norms and Operator Ideals,North-Holland Math. Stud., vol. 176, 1993. A. Defant, P. Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (2009) 1642–1664. A. Defant, D. Popa, U. Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct. Anal. 259 (2010) 220–242. A. Defant, L. Frerick, J. Ortega-Cerdá, M. Ounaïes, K.Seip, The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011) 485–497, doi:10.4007/annals.2011.174.1.13. J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing perators, Cambridge University Press, Cambridge, 1995. U. Haagerup, The best constants in Khinchine inequality, Studia Math. 70 (1982) 231–283. S. Kaijser, Some results in the metric theory of tensor products, Studia Math. 63 (1978) 157–170. J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math. 1 (1930) 164–174. M.C. Matos, Fully absolutely summing and Hilbert–Schmidt multilinear mappings, Collect. Math. 54 (2003) 111–136. H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series: old and new results, J. Anal. 3 (1995) 43–60
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Seoane08_Elsevier.pdf
Size:
162.3 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Seoane8.pdf
Size:
298.82 KB
Format:
Adobe Portable Document Format

Collections