Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Estimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality

dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorPellegrino, D.
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.date.accessioned2023-06-20T00:18:07Z
dc.date.available2023-06-20T00:18:07Z
dc.date.issued2012-05
dc.description.abstractA classical inequality due to H. F. Bohnenblust and E. Hille states that for every positive integer n there is a constant C-n > 0 so that (Sigma(N)(i1,...,in=1) vertical bar U(e(i1), . . . , e(in))vertical bar(2n/n+1))(n+1/2n) <= C-n parallel to U parallel to for every positive integer N and every n-linear mapping U : l(infinity)(N) x . . x l(infinity)(N) -> C. The original estimates for those constants from Bohnenblust and Hille are C-n = n(n+1/2n)2(n-1/2). In this note we present explicit formulae for quite better constants, and calculate the asymptotic behaviour of these estimates, completing recent results of the second and third authors. For example, we show that, if C-R,C- (n) and C-C,C- (n) denote (respectively) these estimates for the real and complex Bohnenblust-Hille inequality then, for every even positive integer n, C-R,C-n/root pi = CC, n/root 2 = 2(n+2/8) . r(n) for a certain sequence {r(n)} which we estimate numerically to belong to the interval (1, 3/2) (the case n odd is similar). Simultaneously, assuming that {r(n)} is in fact convergent, we also conclude that lim(n ->infinity) C-R,C- n/C-R,C- n-1 = lim(n ->infinity) C-C,C- n/C-C,C- n-1 = 2(1/8).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipCNPq
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16876
dc.identifier.doi10.1080/03081087.2011.613833
dc.identifier.issn0308-1087
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/03081087.2011.613833
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42357
dc.issue.number5
dc.journal.titleLinear & Multilinear Algebra
dc.language.isoeng
dc.page.final582
dc.page.initial573
dc.publisherTaylor & Francis
dc.relation.projectIDGrant MTM2009-07848
dc.relation.projectIDGrant 620108/2008-8-Edital Casadinho
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordBohnenblust–Hille Inequality
dc.subject.keywordAsymptotic growth Classification :
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleEstimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality
dc.typejournal article
dc.volume.number60
dcterms.referencesN. Alon, K. Makarychev, Y. Makarychev, and A. Naor, Quadratic forms on graphs, Invent. Math. 163 (2006), pp. 499–522. H.F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann Math. 32 (1931), pp. 600–622. G. Botelho, H.-A. Braunss, H. Junek, and D. Pellegrino, Inclusions and coincidences for multiple summing multilinear mappings, Proc. Amer. Math. Soc. 137 (2009), pp. 991–1000. M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor, The Grothendieck constant is strictly smaller than Krivine’s bound (2011). Available at arXiv:1103.6161v2. A.M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973), pp. 31–40. A. Defant, L. Frerick, J. Ortega-Cerdá, M. Ounaïes, and K. Seip, The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive, Ann. Math. 174 (2011), pp. 485–497. A. Defant, D. Popa, and U. Schwarting, Coordinatewise multiple summing operators in Banach spaces (English summary), J. Funct. Anal. 259 (2010), pp. 220–242. A. Defant and P. Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (2009), pp. 1642–1664. J. Diestel, J. Fourie, and J. Swart, The Metric Theory of Tensor Products, American Mathematical Society, Providence, RI, 2008. J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators (English Summary), Cambridge Studies in Advanced Mathematics, Vol. 43, Cambridge University Press,Cambridge, 1995. P.C. Fishburn and J.A. eeds,Bellinequalities,Grothendieck’s constant, and root two, IAM J. Discrete Math. 7 (1994), pp. 48–56. A. Grothendieck, Résume´ de la théorie métrique des produits tensoriels topologiques French) [Summary of the metric theory of topological tensor products], Bol. Soc. Mat. ao Paulo 8 (1953), pp. 1–79 (Reprint). U. Haagerup, The best constants in the Khintchine inequality, Stud. Math. 70 (1981), p. 231–283, 1982. S. Kaijser, Some results in the metric theory of tensor products, Stud. Math. 63 (1978), p. 157–170. J. Lindenstrauss and A. Pelczynski , Absolutely summing operators in Lp-spaces and their applications, Stud. Math. 29 (1968), pp. 275–326. J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math 1 (1930), pp. 164–174. D. Pellegrino and J.B. Seoane-Sepúlveda, Improving the constants for real and complex Bohnenblust–Hille inequality, preprint (2010). Available at arXiv 1010.0461v2. H. Queffélec, H. Bohr’s vision of ordinary Dirichlet series; Old and new results, J. Anal. 3(1995), pp. 43–60.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MunozFer01.pdf
Size:
140.91 KB
Format:
Adobe Portable Document Format

Collections