Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Decoding hotel reviewers: insights from a decision tree analysis

dc.contributor.authorLlorens Marín, Miguel
dc.contributor.authorHernández Estrada, Adolfo
dc.contributor.authorPuelles Gallo, María
dc.date.accessioned2025-07-11T07:48:03Z
dc.date.available2025-07-11T07:48:03Z
dc.date.issued2025-06-26
dc.description.abstractWith the rise of user-generated content, understanding travelers’ propensity to share hotel experiences online has become a critical research area in tourism and hospitality management. This study examines factors influencing travelers’ likelihood of writing hotel reviews, with a particular focus on the role of different online platforms and sociodemographic characteristics. While previous research has explored general motivations for online review writing, little is known about how specific platforms influence review contributions. To address this gap, we conducted an online survey with 739 travelers and applied a machine learning (ML) technique – decision trees (DTs) – to classify customers based on their likelihood to write reviews. This approach allowed us to model non-linear relationships while ensuring interpretability for marketing practitioners. Our findings reveal that frequent use of Facebook for hotel searches, combined with being employed, is the strongest predictor of review-writing behavior, highlighting the role of social media engagement. However, limitations such as non-probability sampling and the omission of certain variables may impact generalizability. This study contributes to the literature by examining the link between platform usage and review-writing behavior, an area that has received limited attention. By employing DTs, a transparent ML approach, our findings offer actionable insights for hotel managers, helping them identify and engage potential reviewers more effectively. Understanding how platform engagement influences review behavior can enhance marketing strategies, encourage review generation, and ultimately shape consumer decision-making in the hospitality industry.
dc.description.departmentDepto. de Marketing
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.sponsorshipFacultad de Comercio y Turismo, Universidad Complutense de Madrid
dc.description.statuspub
dc.identifier.citationLlorens-Marin, M., Hernandez, A. & Puelles-Gallo, M. (2025). Decoding hotel reviewers: Insights from a decision tree analysis. Management & Marketing, 20(2), 2025. 81-92.
dc.identifier.doi10.2478/mmcks-2025-0010
dc.identifier.officialurlhttps://doi.org/10.2478/mmcks-2025-0010
dc.identifier.relatedurlhttps://sciendo.com/es/article/10.2478/mmcks-2025-0010
dc.identifier.urihttps://hdl.handle.net/20.500.14352/122429
dc.issue.number2
dc.journal.titleManagement & Marketing
dc.language.isoeng
dc.page.final92
dc.page.initial81
dc.publisherSciendo
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordhotel reviews
dc.subject.keywordeWOM
dc.subject.keywordelectronic word-of-mouth
dc.subject.keyworddigital marketing
dc.subject.keyworddecision trees
dc.subject.keywordwriting reviews
dc.subject.ucmMarketing
dc.subject.ucmTurismo
dc.subject.unesco5311.05 Marketing (Comercialización)
dc.titleDecoding hotel reviewers: insights from a decision tree analysis
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number20
dspace.entity.typePublication
relation.isAuthorOfPublicationcdf82cc4-9f6e-4cec-8984-444b65949c52
relation.isAuthorOfPublication1ae35181-080b-4abf-9dc4-56a78e074712
relation.isAuthorOfPublication7334a727-102b-401a-aad2-9798e89fa8b5
relation.isAuthorOfPublication.latestForDiscoverycdf82cc4-9f6e-4cec-8984-444b65949c52

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Decoding hotel reviewers.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format

Collections