Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

On the absolute value of the air-fluorescence yield

dc.contributor.authorRosado Vélez, Jaime
dc.contributor.authorBlanco Ramos, Francisco
dc.contributor.authorArqueros Martínez, Fernando
dc.date.accessioned2023-06-19T14:55:32Z
dc.date.available2023-06-19T14:55:32Z
dc.date.issued2014-03
dc.description© Elsevier Science BV 2014. This work was supported by MINECO (FPA2009-07772, FPA2012-39489-C04-02) and CONSOLIDER CPAN CSD2007-42. We thank our colleagues of the Auger Collaboration for fruitful discussions and comments on this work.
dc.description.abstractThe absolute value of the air-fluorescence yield is a key parameter for the energy reconstruction of extensive air showers registered by fluorescence telescopes. In previous publications, we reported a detailed Monte Carlo simulation of the air-fluorescence generation that allowed the theoretical evaluation of this parameter. This simulation has been upgraded in the present work. As a result, we determined an updated absolute value of the fluorescence yield of 7.9 +/- 2.0 ph/MeV for the band at 337 nm in dry air at 800 hPa and 293 K, in agreement with experimental values. We have also performed a critical analysis of available absolute measurements of the fluorescence yield with the assistance of our simulation. Corrections have been applied to some measurements to account for a bias in the evaluation of the energy deposition. Possible effects of other experimental aspects have also been discussed. From this analysis, we determined an average fluorescence yield of 7.04 +/- 0.24 ph/MeV at the above conditions. (C) 2014 Elsevier B.V. All rights reserved.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipCONSOLIDER CPAN
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/32467
dc.identifier.doi10.1016/j.astropartphys.2014.02.003
dc.identifier.issn0927-6505
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.astropartphys.2014.02.003
dc.identifier.relatedurlhttp://arxiv.org/abs/1401.4310
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34804
dc.journal.titleAstroparticle physics
dc.language.isoeng
dc.page.final62
dc.page.initial51
dc.publisherElsevier Science BV
dc.relation.projectIDFPA2009-07772
dc.relation.projectIDFPA2012-39489-004-02
dc.relation.projectIDCSD2007-42
dc.rights.accessRightsopen access
dc.subject.cdu539.1
dc.subject.keywordElectron-impact
dc.subject.keywordCross-sections
dc.subject.keywordSecondary electrons
dc.subject.keywordCosmic-rays
dc.subject.keywordNitrogen
dc.subject.keywordPressure
dc.subject.keywordDetector
dc.subject.keywordState
dc.subject.keywordBeam
dc.subject.keywordNM
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleOn the absolute value of the air-fluorescence yield
dc.typejournal article
dc.volume.number55
dcterms.references[1] T. Abu-Zayyad et al., Nucl. Instrum. Meth. A 450 (2000) 253. [2] J. Abraham et al., Nucl. Instr. Meth. A 620 (2010) 227. [3] H. Tokuno et al., Nucl. Instr. Meth. A 676 (2012) 54. [4] F. Kajino et al., 33rd International Cosmic-Ray Conference (Rio de Janeiro, 2013), paper 1128. [5] A.E. Grün and E. Schopper, Z. Naturforsch A 9 (1954) 134; A.E. Grün, Can. J. Phys. 36 (1958) 858. [6] O. Stern and M. Volmer, Physik. Zeitschrift, 20 (1919) 183. [7] F. Blanco and F. Arqueros, Phys. Lett. A 345 (2005) 355. [8] F. Arqueros et al., Astropart. Phys. 26 (2006) 231. [9] F. Arqueros, F. Blanco and J. Rosado, Nucl. Instrum. Meth. A 597 (2008) 94. [10] F. Arqueros, F. Blanco and J. Rosado, New J. Phys. 11 (2009) 065011. [11] J. Rosado, F. Blanco and F. Arqueros, Astropart. Phys. 34 (2010) 164. [12] F. Kakimoto et al., Nucl. Instrum. Meth. A 372 (1996) 205. [13] M. Nagano et al., Astropart. Phys. 22 (2004) 235. [14] G. Lefeuvre et al., Nucl. Instrum. Meth. A 578 (2007) 78. [15] P. Colin et al. [MACFLY Collaboration], Astropart. Phys. 27 (2007) 317. [16] R. Abbasi et al. [FLASH Collaboration], Astropart. Phys. 29 (2008) 77. [17] T. Waldenmaier et al., Astropart. Phys. 29 (2008) 205. [18] T. Dandl, T. Heindl and A. Ulrich, JINST 7 (2012) P11005. [19] M. Ave et al. [AIRFLY Collaboration], Astropart. Phys. 42 (2013) 90. [20] J. Rosado, F. Blanco and F. Arqueros, Average value of available measurements of the absolute air-fluorescence yield, unpublished manuscript. Available at http://arxiv.org/abs/1103.2022. [21] J. Rosado, Analysis of the air uorescence induced by electrons for application to cosmic-ray detection, PhD Thesis, Universidad Complutense de Madrid, 2011. [22] J. Rosado, F. Blanco and F. Arqueros, AIP Conf. Proc. 1367 (2011) 34. [23] J. Rosado et al., EPJ Conf. 53 (2013) 10001. Available at http://arxiv.org/abs/1207.2913. [24] J. Rosado and F. Arqueros, 33rd International Cosmic-Ray Conference (Rio de Janeiro, 2013), paper 377. [25] R.M. Sternheimer, Phys. Rev. 88 (1952) 851. [26] J. Rosado et al., Nucl. Instrum. Meth. A 597 (2008) 83. [27] A. Allisy et al., Stopping Powers for Electrons and Positrons (ICRU Report No. 37, 1984); M.J. Berger et al., ESTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons (ver. 1.2.3, 2005, NIST). Available at http://physics.nist.gov/Star. [28] S. Agostinelli et al., Nucl. Instrum. Meth. A 506 (2003) 250. [29] M. Risse and D. Heck, Astropart. Phys. 20 (2004) 661. [30] Y.-K. Kim et al., Electron impact cross sections for ionization and excitation (ver. 3.0, 2004, NIST). Available at http://physics.nist.gov/ionxsec. [31] Y. Itikawa, J. Phys. Chem. Ref. Data 35 (2006) 31. [32] Y. Itikawa et al., J. Phys. Chem. Ref. Data 18 (1989) 23. [33] M. Ave et al. [AIRFLY Collaboration], Astropart. Phys. 28 (2007) 41. [34] J.T. Fons, R.S. Schappe and C.C. Lin, Phys. Rev. A 53 (1996) 2239. [35] G. Dilecce, P.F. Ambrico and S. De Benedictis, Chem. Phys. Lett. 431 (2006) 241. [36] A. Morozov et al., Eur. Phys. J. D 46 (2008) 51; A. Morozov et al., Nucl. Instr. Meth. A 597 (2008) 105. [37] M. Ave et al. [AIRFLY Collaboration], Nucl. Instrum. Meth. A 597 (2008) 50. [38] W.R. Nelson, H. Hiragrama and D.W.O. Rogers, The EGS4 Code System (Stanford Linear Accelerator Center, SLAC-265, 1985). [39] T. Waldenmaier et al., 8th Air-Fluorescence Workshop (Karlsruhe, 2011). Available at http://www.kceta.kit.edu/downloads/Talk Waldenmaier.pdf [40] C.B. Opal, E.C. Beaty and W.K. Peterson, At. Data 4 (1972) 209. [41] V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii, Relativistic Quantum Theory (vol. 4, part 1 of A Course of Theoretical Physics), Pergamon Press (1971). [42] T.W. Shyn, Phys. Rev. A 27 (1983) 2388. [43] R.R. Goruganthu, W.G. Wilson and R.A. Bonham, Phys. Rev. A 35 (1987) 540. [44] Y.-K. Kim, J.P. Santos and F. Parente, Phys. Rev. A 62 (2000) 052710. [45] J.M. Fernández-Varea et al., Nucl. Instrum. Meth. B 229 (2005) 187. [46] F. Blanco and G. García, Phys. Lett. A 317 (2003) 458. [47] A. Roldán et al., J. Appl. Phys. 95 (2004) 5868.
dspace.entity.typePublication
relation.isAuthorOfPublication32033072-414c-4448-b44b-98a6bd3e9321
relation.isAuthorOfPublicationfd97b031-5b10-40ab-beb5-8f192e632ca3
relation.isAuthorOfPublicatione6fd6d50-2946-45a9-a515-273dddff2091
relation.isAuthorOfPublication.latestForDiscovery32033072-414c-4448-b44b-98a6bd3e9321

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
arqueros15preprint.pdf
Size:
454.62 KB
Format:
Adobe Portable Document Format

Collections