Stable Bloch oscillations of cold atoms with time-dependent interaction
dc.contributor.author | Gaul, Christopher | |
dc.contributor.author | Lima, R. P. A. | |
dc.contributor.author | Díaz García, Elena | |
dc.contributor.author | Mueller, C. A. | |
dc.contributor.author | Domínguez-Adame Acosta, Francisco | |
dc.date.accessioned | 2023-06-20T03:45:55Z | |
dc.date.available | 2023-06-20T03:45:55Z | |
dc.date.issued | 2009-06-26 | |
dc.description | © 2009 The American Physical Society. Travel between Bayreuth and Madrid is supported by the DAAD-MEC joint program Acciones Integradas. Work at Madrid was supported by MEC (Project MOSAICO) and BSCH-UCM (Project No. PR34/07-15916). R. P. A. L. ac knowledges support by MEC through the Juan de la Cierva program and G. Rowlands for helpful discussions. C. G. acknowledges support by DFG and DAAD, and C. M. acknowledges helpful discussions with Y. Gaididei | |
dc.description.abstract | We investigate Bloch oscillations of interacting cold atoms in a mean-field framework. In general, atom-atom interaction causes dephasing and destroys Bloch oscillations. Here we show that Bloch oscillations are persistent if the interaction is modulated harmonically with suitable frequency and phase. For other modulations, Bloch oscillations are rapidly damped. We explain this behavior in terms of collective coordinates whose Hamiltonian dynamics permits one to predict a whole family of stable solutions. In order to describe also the unstable cases, we carry out a stability analysis for Bogoliubov excitations. Using Floquet theory, we are able to predict the unstable modes as well as their growth rate, found to be in excellent agreement with numerical simulations. | |
dc.description.department | Depto. de Física de Materiales | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MEC | |
dc.description.sponsorship | BSCH-UCM | |
dc.description.sponsorship | DFG | |
dc.description.sponsorship | DAAD | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27288 | |
dc.identifier.doi | 10.1103/PhysRevLett.102.255303 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevLett.102.255303 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44400 | |
dc.issue.number | 25 | |
dc.journal.title | Physical Review Letters | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | PR34/07-15916 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 538.9 | |
dc.subject.keyword | Semiconductor Superlattice | |
dc.subject.keyword | Dynamics | |
dc.subject.ucm | Física de materiales | |
dc.title | Stable Bloch oscillations of cold atoms with time-dependent interaction | |
dc.type | journal article | |
dc.volume.number | 102 | |
dcterms.references | [1] F. Bloch, Z. Phys. 52, 555 (1929). [2] J. Feldmann et al., Phys. Rev. B 46, R7252 (1992). [3] K. Leo et al., Solid State Commun. 84, 943 (1992). [4] M. BenDahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [5] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [6] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). [7] G. Roati et al., Phys. Rev. Lett. 92, 230402 (2004). [8] L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004). [9] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001). [10] D. Witthaut, M. Werder, S. Mossmann, and H. J. Korsch, Phys. Rev. E 71, 036625 (2005). [11] E. A. Donley et al., Nature (London) 412, 295 (2001). [12] M. Fattori et al., Phys. Rev. Lett. 100, 080405 (2008). [13] M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008). [14] M. Salerno, V. V. Konotop, and Yu. V. Bludov, Phys. Rev. Lett. 101, 030405 (2008). [15] F. Kh. Abdullaev, E. N. Tsoy, B. A. Malomed, and R. A. Kraenkel, Phys. Rev. A 68, 053606 (2003). [16] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). [17] B. Wu and Q. Niu, New J. Phys. 5, 104 (2003). [18] G. Teschl, Ordinary Differential Equations and Dynamical Systems (unpublished), available at http://www.mat. univie.ac.at/gerald/ftp/book-ode/. [19] S. Drenkelforth et al., New J. Phys. 10, 045027 (2008). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3df963ba-ec00-405d-9b2a-9200d1b4148b | |
relation.isAuthorOfPublication | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 | |
relation.isAuthorOfPublication | dbc02e39-958d-4885-acfb-131220e221ba | |
relation.isAuthorOfPublication.latestForDiscovery | d03da7bf-8066-4f33-93e2-ac077fd4fcb8 |
Download
Original bundle
1 - 1 of 1