Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stable Bloch oscillations of cold atoms with time-dependent interaction

dc.contributor.authorGaul, Christopher
dc.contributor.authorLima, R. P. A.
dc.contributor.authorDíaz García, Elena
dc.contributor.authorMueller, C. A.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T03:45:55Z
dc.date.available2023-06-20T03:45:55Z
dc.date.issued2009-06-26
dc.description© 2009 The American Physical Society. Travel between Bayreuth and Madrid is supported by the DAAD-MEC joint program Acciones Integradas. Work at Madrid was supported by MEC (Project MOSAICO) and BSCH-UCM (Project No. PR34/07-15916). R. P. A. L. ac knowledges support by MEC through the Juan de la Cierva program and G. Rowlands for helpful discussions. C. G. acknowledges support by DFG and DAAD, and C. M. acknowledges helpful discussions with Y. Gaididei
dc.description.abstractWe investigate Bloch oscillations of interacting cold atoms in a mean-field framework. In general, atom-atom interaction causes dephasing and destroys Bloch oscillations. Here we show that Bloch oscillations are persistent if the interaction is modulated harmonically with suitable frequency and phase. For other modulations, Bloch oscillations are rapidly damped. We explain this behavior in terms of collective coordinates whose Hamiltonian dynamics permits one to predict a whole family of stable solutions. In order to describe also the unstable cases, we carry out a stability analysis for Bogoliubov excitations. Using Floquet theory, we are able to predict the unstable modes as well as their growth rate, found to be in excellent agreement with numerical simulations.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMEC
dc.description.sponsorshipBSCH-UCM
dc.description.sponsorshipDFG
dc.description.sponsorshipDAAD
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27288
dc.identifier.doi10.1103/PhysRevLett.102.255303
dc.identifier.issn0031-9007
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevLett.102.255303
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44400
dc.issue.number25
dc.journal.titlePhysical Review Letters
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDPR34/07-15916
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSemiconductor Superlattice
dc.subject.keywordDynamics
dc.subject.ucmFísica de materiales
dc.titleStable Bloch oscillations of cold atoms with time-dependent interaction
dc.typejournal article
dc.volume.number102
dcterms.references[1] F. Bloch, Z. Phys. 52, 555 (1929). [2] J. Feldmann et al., Phys. Rev. B 46, R7252 (1992). [3] K. Leo et al., Solid State Commun. 84, 943 (1992). [4] M. BenDahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [5] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [6] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). [7] G. Roati et al., Phys. Rev. Lett. 92, 230402 (2004). [8] L. Fallani et al., Phys. Rev. Lett. 93, 140406 (2004). [9] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001). [10] D. Witthaut, M. Werder, S. Mossmann, and H. J. Korsch, Phys. Rev. E 71, 036625 (2005). [11] E. A. Donley et al., Nature (London) 412, 295 (2001). [12] M. Fattori et al., Phys. Rev. Lett. 100, 080405 (2008). [13] M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008). [14] M. Salerno, V. V. Konotop, and Yu. V. Bludov, Phys. Rev. Lett. 101, 030405 (2008). [15] F. Kh. Abdullaev, E. N. Tsoy, B. A. Malomed, and R. A. Kraenkel, Phys. Rev. A 68, 053606 (2003). [16] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179 (2006). [17] B. Wu and Q. Niu, New J. Phys. 5, 104 (2003). [18] G. Teschl, Ordinary Differential Equations and Dynamical Systems (unpublished), available at http://www.mat. univie.ac.at/gerald/ftp/book-ode/. [19] S. Drenkelforth et al., New J. Phys. 10, 045027 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublication3df963ba-ec00-405d-9b2a-9200d1b4148b
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame30libre.pdf
Size:
796.4 KB
Format:
Adobe Portable Document Format

Collections