A supervised approach to community detection problem: how to improve Louvain algorithm by considering fuzzy measures
dc.conference.date | 19-21 Jul 2022 | |
dc.conference.place | Izmir, Turquía | |
dc.conference.title | International Conference on Intelligent and Fuzzy Systems, INFUS 2022 | |
dc.contributor.author | Barroso, María | |
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Gutiérrez García-Pardo, Inmaculada | |
dc.date.accessioned | 2024-09-03T07:27:21Z | |
dc.date.available | 2024-09-03T07:27:21Z | |
dc.date.issued | 2022 | |
dc.description | Colección de libros: Lecture Notes in Networks and Systems (504 LNNS) | |
dc.description.abstract | Community detection problems are one of the most important problems in Social Network Analysis. Based on the Louvain algorithm, in this paper we propose a supervised technique to address the classic community detection problem in both directed and undirected networks. Our proposal is developed on the basis of extended fuzzy graphs, specifically paying attention to the notion of flow. We present a parametric and aggregation supervised approach that uses the flow capacity in terms of fuzzy information, in order to obtain realistic and global solutions, going one step further than local previous results. We evaluate the performance of that supervised technique by considering several benchmark and real-world networks. Taking into account the directed modularity, this new approach is developed under the machine learning paradigm, carrying through with two consecutive phases. The results obtained allow us to assert the goodness of our new supervised technique, beyond others existing algorithms | |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia, Innovación y Universidades (España) | |
dc.description.status | pub | |
dc.identifier.citation | Barroso, M., Gómez, D. y Gutiérrez, I. (2022) «A Supervised Approach to Community Detection Problem: How to Improve Louvain Algorithm by Considering Fuzzy Measures», en Lecture Notes in Networks and Systems. Springer Science and Business Media Deutschland GmbH, pp. 219-227. Disponible en: https://doi.org/10.1007/978-3-031-09173-5_28 | |
dc.identifier.doi | 10.1007/978-3-031-09173-5_28 | |
dc.identifier.essn | 2367-3389 | |
dc.identifier.isbn | 9783031091728 | |
dc.identifier.issn | 2367-3370 | |
dc.identifier.officialurl | https://doi.org/10.1007/978-3-031-09173-5_28 | |
dc.identifier.relatedurl | https://link.springer.com/chapter/10.1007/978-3-031-09173-5_28 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/107835 | |
dc.language.iso | eng | |
dc.page.final | 227 | |
dc.page.initial | 219 | |
dc.relation.projectID | PGC2018-096509-B-I00 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | metadata only access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 510.5 | |
dc.subject.cdu | 519.22-7 | |
dc.subject.cdu | 519.2 | |
dc.subject.cdu | 519.712 | |
dc.subject.keyword | Community detection | |
dc.subject.keyword | Complex networks | |
dc.subject.keyword | Flow Capacity Louvain | |
dc.subject.keyword | Fuzzy measures | |
dc.subject.keyword | Louvain algorithm | |
dc.subject.keyword | Modularity | |
dc.subject.ucm | Estadística | |
dc.subject.ucm | Estadística aplicada | |
dc.subject.unesco | 1209 Estadística | |
dc.subject.unesco | 1209.03 Análisis de Datos | |
dc.subject.unesco | 1206.01 Construcción de Algoritmos | |
dc.title | A supervised approach to community detection problem: how to improve Louvain algorithm by considering fuzzy measures | |
dc.type | conference paper | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 2f4cd183-2dd2-4b4e-8561-9086ff5c0b90 | |
relation.isAuthorOfPublication.latestForDiscovery | 4dcf8c54-8545-4232-8acf-c163330fd0fe |