Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A supervised approach to community detection problem: how to improve Louvain algorithm by considering fuzzy measures

dc.conference.date19-21 Jul 2022
dc.conference.placeIzmir, Turquía
dc.conference.titleInternational Conference on Intelligent and Fuzzy Systems, INFUS 2022
dc.contributor.authorBarroso, María
dc.contributor.authorGómez González, Daniel
dc.contributor.authorGutiérrez García-Pardo, Inmaculada
dc.date.accessioned2024-09-03T07:27:21Z
dc.date.available2024-09-03T07:27:21Z
dc.date.issued2022
dc.descriptionColección de libros: Lecture Notes in Networks and Systems (504 LNNS)
dc.description.abstractCommunity detection problems are one of the most important problems in Social Network Analysis. Based on the Louvain algorithm, in this paper we propose a supervised technique to address the classic community detection problem in both directed and undirected networks. Our proposal is developed on the basis of extended fuzzy graphs, specifically paying attention to the notion of flow. We present a parametric and aggregation supervised approach that uses the flow capacity in terms of fuzzy information, in order to obtain realistic and global solutions, going one step further than local previous results. We evaluate the performance of that supervised technique by considering several benchmark and real-world networks. Taking into account the directed modularity, this new approach is developed under the machine learning paradigm, carrying through with two consecutive phases. The results obtained allow us to assert the goodness of our new supervised technique, beyond others existing algorithms
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.citationBarroso, M., Gómez, D. y Gutiérrez, I. (2022) «A Supervised Approach to Community Detection Problem: How to Improve Louvain Algorithm by Considering Fuzzy Measures», en Lecture Notes in Networks and Systems. Springer Science and Business Media Deutschland GmbH, pp. 219-227. Disponible en: https://doi.org/10.1007/978-3-031-09173-5_28
dc.identifier.doi10.1007/978-3-031-09173-5_28
dc.identifier.essn2367-3389
dc.identifier.isbn9783031091728
dc.identifier.issn2367-3370
dc.identifier.officialurlhttps://doi.org/10.1007/978-3-031-09173-5_28
dc.identifier.relatedurlhttps://link.springer.com/chapter/10.1007/978-3-031-09173-5_28
dc.identifier.urihttps://hdl.handle.net/20.500.14352/107835
dc.language.isoeng
dc.page.final227
dc.page.initial219
dc.relation.projectIDPGC2018-096509-B-I00
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsmetadata only access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu510.5
dc.subject.cdu519.22-7
dc.subject.cdu519.2
dc.subject.cdu519.712
dc.subject.keywordCommunity detection
dc.subject.keywordComplex networks
dc.subject.keywordFlow Capacity Louvain
dc.subject.keywordFuzzy measures
dc.subject.keywordLouvain algorithm
dc.subject.keywordModularity
dc.subject.ucmEstadística
dc.subject.ucmEstadística aplicada
dc.subject.unesco1209 Estadística
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco1206.01 Construcción de Algoritmos
dc.titleA supervised approach to community detection problem: how to improve Louvain algorithm by considering fuzzy measures
dc.typeconference paper
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication2f4cd183-2dd2-4b4e-8561-9086ff5c0b90
relation.isAuthorOfPublication.latestForDiscovery4dcf8c54-8545-4232-8acf-c163330fd0fe

Download