Inflectional loci of scrolls

dc.contributor.authorLanteri, Antonio
dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.authorPiene, Ragni
dc.date.accessioned2023-06-20T10:33:50Z
dc.date.available2023-06-20T10:33:50Z
dc.date.issued2008-03
dc.description.abstractLet X⊂PN be a scroll over a smooth curve C and let L=OPN(1)|X denote the hyperplane bundle. The special geometry of X implies that certain sheaves related to the principal part bundles of L are locally free. The inflectional loci of X can be expressed in terms of these sheaves, leading to explicit formulas for the cohomology classes of the loci. The formulas imply that the only uninflected scrolls are the balanced rational normal scrolls.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20544
dc.identifier.doi10.1007/s00209-007-0185-5
dc.identifier.issn0025-5874
dc.identifier.officialurlhttp://link.springer.com/article/10.1007/s00209-007-0185-5
dc.identifier.relatedurlhttp://link.springer.com/journal/209
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50536
dc.issue.number3
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final564
dc.page.initial557
dc.publisherSpringer
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordProjective techniques
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleInflectional loci of scrolls
dc.typejournal article
dc.volume.number258
dcterms.referencesFulton W. (1998). Intersection theory, 2nd ed. Springer, Heidelberg Ionescu P., Toma M. (1997). On very ample vector bundles on curves. Int. J. Math. 8: 633–643 Lanteri A. (2000). On the osculatory behavior of surface scrolls. Matematiche (Catania) 55: 447–458 Lanteri, A., Mallavibarrena, R.: Osculating properties of decomposable scrolls (Preprint) (2006) Mallavibarrena R., Piene R. (1991). Duality for elliptic normal surface scrolls. Contemp. Math. 123: 149–160 Piene, R.: Numerical characters of a curve in projective n-space. In: Holm, P. (ed.) Real and complex singularities. Proceedings, Oslo 1976, pp. 475–496. Sijthoff and Noordhoff (1977) Piene R., Sacchiero G. (1984). Duality for rational normal scrolls. Comm. Algebra 12: 1041–1066 Piene, R., Tai, H. S.: A characterization of balanced rational normal scrolls in terms of their osculating spaces. In: Xambo-Descamps, S. (ed.) Enumerative geometry. Proceedings of Sitges, 1987, pp. 215–224. Lecture Notes in Mathematics 1436, Springer, Heidelberg (1990) Shifrin T. (1986). The osculatory behavior of surfaces in P5 . Pacif. J. Math. 123: 227–256
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Malla11.pdf
Size:
170 KB
Format:
Adobe Portable Document Format

Collections