Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks

dc.contributor.authorPortela García-Miguel, Javier
dc.contributor.authorGarcía Villalba, Luis Javier
dc.contributor.authorSilva Trujillo, Alejandra Guadalupe
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorKim, Tai-Hoon
dc.date.accessioned2023-06-18T00:05:06Z
dc.date.available2023-06-18T00:05:06Z
dc.date.issued2016-11-01
dc.description.abstractSocial network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks.
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Estudios Estadísticos
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67732
dc.identifier.doi10.3390/s16111832
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s16111832
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/16/11/1832
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19229
dc.issue.number11
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial1832
dc.publisherMDPI
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordanonymity
dc.subject.keywordemail network
dc.subject.keywordgraph theory
dc.subject.keywordprivacy
dc.subject.keywordsocial network analysis
dc.subject.keywordsmall-world-ness
dc.subject.keywordstatistical disclosure attack
dc.subject.ucmRedes
dc.subject.ucmEstadística
dc.subject.unesco1209 Estadística
dc.titleEstimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks
dc.typejournal article
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication44f935e8-9acf-4613-ab4d-e007edda7540
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication.latestForDiscovery44f935e8-9acf-4613-ab4d-e007edda7540

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-16-018322.pdf
Size:
4.25 MB
Format:
Adobe Portable Document Format

Collections