Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks
dc.contributor.author | Portela García-Miguel, Javier | |
dc.contributor.author | García Villalba, Luis Javier | |
dc.contributor.author | Silva Trujillo, Alejandra Guadalupe | |
dc.contributor.author | Sandoval Orozco, Ana Lucila | |
dc.contributor.author | Kim, Tai-Hoon | |
dc.date.accessioned | 2023-06-18T00:05:06Z | |
dc.date.available | 2023-06-18T00:05:06Z | |
dc.date.issued | 2016-11-01 | |
dc.description.abstract | Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks. | |
dc.description.department | Depto. de Estadística y Ciencia de los Datos | |
dc.description.department | Depto. de Ingeniería de Software e Inteligencia Artificial (ISIA) | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.faculty | Fac. de Informática | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/67732 | |
dc.identifier.doi | 10.3390/s16111832 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.officialurl | https://doi.org/10.3390/s16111832 | |
dc.identifier.relatedurl | https://www.mdpi.com/1424-8220/16/11/1832 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/19229 | |
dc.issue.number | 11 | |
dc.journal.title | Sensors | |
dc.language.iso | eng | |
dc.page.initial | 1832 | |
dc.publisher | MDPI | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.keyword | anonymity | |
dc.subject.keyword | email network | |
dc.subject.keyword | graph theory | |
dc.subject.keyword | privacy | |
dc.subject.keyword | social network analysis | |
dc.subject.keyword | small-world-ness | |
dc.subject.keyword | statistical disclosure attack | |
dc.subject.ucm | Redes | |
dc.subject.ucm | Estadística | |
dc.subject.unesco | 1209 Estadística | |
dc.title | Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks | |
dc.type | journal article | |
dc.volume.number | 16 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 44f935e8-9acf-4613-ab4d-e007edda7540 | |
relation.isAuthorOfPublication | 0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0 | |
relation.isAuthorOfPublication | dea44425-99a5-4fef-b005-52d0713d0e0d | |
relation.isAuthorOfPublication.latestForDiscovery | 44f935e8-9acf-4613-ab4d-e007edda7540 |
Download
Original bundle
1 - 1 of 1