Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center

dc.contributor.authorGammaldi, Viviana
dc.contributor.authorRuiz Cembranos, José Alberto
dc.contributor.authorCruz Dombriz, Álvaro de la
dc.contributor.authorLineros, Roberto A.
dc.contributor.authorLópez Maroto, Antonio
dc.description© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. This work was supported by UCM FPI grants G/640/400/8000 (2011 Program), the Spanish MINECO projects numbers FIS2011-23000, FPA2011-27853-C02-01and MULTIDARK CSD2009-00064 (Consolider- Ingenio 2010 Programme). A.d.l.C.D. also acknowledges the hospitality of FAE-UAB in the final stages of preparation of this manuscript.
dc.description.abstractWe present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid (UCM)
dc.description.sponsorshipProyecto Método de Multimensajeros para la Detección de la Materia Oscura (MultiDark)
dc.description.sponsorshipPrograma Conosolider-Ingenio (MINECO)
dc.identifier.citation[1] J. A. R. Cembranos, V. Gammaldi and A. L. Maroto, Phys. Rev. D 86, 103506 (2012), arXiv:1204.0655v2 [hep-ph]; JCAP04(2013)051, arXiv:1302.6871v2 [astro-ph.CO];. [2] F. Aharonian, A.G. Akhperjanian, K.M. Aye et al. A&A, 503, 817 (2009). [3] J. A. R. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi, R.A. Lineros, A.L. Maroto, JHEP 1309 (2013) 077, arXiv:1305.2124v3[hep-ph]. [4] H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983); J. R. Ellis et al., Nucl. Phys. B 238, 453 (1984); K. Griest and M. Kamionkowski, Phys. Rep. 333, 167 (2000); J. A. R. Cembranos, A. Dobado and A. L. Maroto, Phys. Rev. Lett. 90, 241301 (2003); Phys. Rev. D 68, 103505 (2003); Phys. Rev. D 73, 035008 (2006); Phys. Rev. D 73, 057303 (2006); A. L. Maroto, Phys. Rev. D 69, 043509(2004); Phys. Rev. D 69, 101304 (2004); A. Dobado and A. L. Maroto, Nucl. Phys. B 592, 203 (2001); Int. J. Mod. Phys. D13, 2275 (2004) [hep-ph/0405165]; J. A. R. Cembranos et al., JCAP 0810, 039 (2008). [5] A. Dobado and A. L. Maroto, Nucl. Phys. B 592, 203 (2001); J. A. R. Cembranos, A. Dobado and A. L. Maroto, Phys. Rev. Lett. 90, 241301 (2003); Phys. Rev. D 68, 103505 (2003); A. L. Maroto, Phys. Rev. D 69, 043509 (2004); Phys. Rev. D 69, 101304(2004); Int. J. Mod. Phys. D13, 2275 (2004). J. A. R. Cembranos et al., JCAP 0810, 039 (2008). [6] J. A. R. Cembranos, V. Gammaldi, A.L. Maroto arXiv:1403.6018 [hep-ph]. [7] J.F. Navarro, C.S. Frenk, S.D. White ApJ, 490 (1997), p. 493 [8] T. Sjostrand, S. Mrenna and P. Skands, JHEP05 (2006) 026 (LU TP 06-13, FERMILAB-PUB-06-052-CD-T) [hep-ph/0603175]. [9] J. A. R. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. L. Maroto, Phys. Rev. D 83, 083507 (2011); AIP Conf. Proc. 1343, 595-597 (2011); J. Phys. Conf. Ser. 314, 012063 (2011); A. de la Cruz-Dombriz and V. Gammaldi, arXiv:1109.5027 [hep-ph]; spectra.html. [10] A. A. Abdo et al. [arXiv:astro-ph.CO/1001.4531v1] (2010). M. Chernyakova et. al., ApJ 726, 60 (2011); T. Linden, E. Lovegrove and S. Profumo, arXiv:1203.3539 [astro-ph.HE]. [11] M. H. Seymour and M. Marx, arXiv:1304.6677 [hep-ph]. [12] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012). [13] G. Altarelli, G. Parisi Nucl. Phys. B, 126 (1977), p. 298 Article PDF (759K) [14] G. Marchesini and B.R. Webber, Nucl. Phys. B 238 1 (1984); Nucl. Phys. B 310 461 (1988). [15] T. Sjöstrand, P. Skands Eur. Phys. J. C 39 (2005), p. 129 [16] Catani, Webber, Marchesini, Nucl. Phys. B349 (1991) 635-654. [17] T. Sjöstrand, S. Mrenna, P. Skands, arXiv:0603175.[hep-ph]. [18] T. Sjöstrand, S. Mrenna, P. Skands, arXiv:0710.3820v1 [hep-ph]; [19] G. Corcella et al., arXiv:0011363v3.[hep-ph]. [20] M. Bähr et al., arXiv:0803.0883v3 [hep-ph]. S. Gieseke et al., arXiv:1102.1672v1 [hep-ph], K. Arnold et al., arXiv:1205.4902v1 [hep-ph]. [21] J. A. R. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi, A.L. Maroto, Phys. Rev. D 85, 043505 (2012), arXiv:1111.4448 [astro-ph.CO]. [22] M. Cirelli et al. arXiv:1012.4515v4 [hep-ph]. [23] S. Adrian-Martinez et al. ANTARES Collaboration, Astrophy. J. 760:53(2012), arXiv:1207. 3105 (2012); S. Schulte for the ANTARES Collaboration, icrc2013-0425; S. Adrin-Martnez et al., ANTARES Collaboration, ArXiv:1207.3105v2 [hep-ph]. [24] R. Abbasi et al. IceCube Collaboration, arXiv:1210.3557v1 [hep-ex]. [25] M.G. Aartsen et al., IceCube Collaboration, arXiv:1212.4760v2 (2012). [26] R. Abbasi et al., IceCube Collaboration, arXiv:1010.3980v2 (2010); M.G. Aartesen et al. arXiv:1307.6669. [27] G.R. Blumenthal, S.M. Faber, R. Flores, J.R. Primack, ApJ 301, 27 (1986); O. Y. Gnedin, A.V. Kravtsov, A.A. Klypin and D. Nagai, ApJ 616, 16 (2004). [28] F. Prada, A. Klypin, J. Flix Molina, M. Mart́ınez, E. Simonneau, Phys. Rev. Lett. 93, 241301 (2004). [29] E. Romano-D́ıaz, I. Shlosman, Y. Hoffman, and C. Heller, ApJ 685, L105 (2008); ApJ 702, 1250 (2009); A. V. Maccio’ et. al., arXiv:1111.5620 [astro-ph.CO]. [30] T. Seitz, R. Shanidze KM3NET Consortium, Nuclear Instrument and Methods in Physics Research A 626-627 (2011) S205-S207;
dc.journal.titlePhysics procedia
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.subject.keywordDark Matter
dc.subject.keywordGalactic center
dc.subject.keywordgamma rays
dc.subject.keywordMonte Carlo phenomenology.
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleGamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center
dc.typejournal article
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Cembranos,JAR57libre + CC.pdf
677.97 KB
Adobe Portable Document Format