Sweeping gas membrane distillation of sucrose aqueous solutions: response surface modeling and optimization

dc.contributor.authorCojocaru, C.
dc.contributor.authorKhayet Souhaimi, Mohamed
dc.date.accessioned2023-06-20T03:41:51Z
dc.date.available2023-06-20T03:41:51Z
dc.date.issued2011-09-05
dc.description© 2011 Elsevier B.V. The author (C. Cojocaru) is grateful to Spanish Ministry of Science and Innovation for supporting the research grant (project SB2009-0009). The authors acknowledge the financial support of the University Complutense of Madrid, UCM-BSCH (Projects GR58/08 and GR35/10-A, UCM group 910336).
dc.description.abstractResponse surface methodology and desirability function approach have been applied for modeling and multi-response optimization of sweeping gas membrane distillation process used for concentration of sucrose aqueous solutions. Response surface models have been developed to predict the permeate flux and the sucrose concentration rate. The models have been statistically validated by ANOVA. The sucrose rejection factor was found to be greater than 98.9% and therefore the response surface model can not be developed for this response. The models have been used to perform the overall desirability function. In addition, the overlap contour plots have been drawn to study the interaction effects between operating parameters on both the permeate flux and the sucrose concentration rate, to identify the desirability zone and to determine the optimal point. The optimal operating conditions were found to be 70.9 degrees C feed temperature, 2.09 m/s air circulation velocity and an initial sucrose concentration of 223 g/L. Under these conditions the measured permeate flux 1.077 x 10(-3) kg/m(2) s and the sucrose concentration rate 4.686 g/L h were found to be the highest values in this study confirming the validity of the applied sweeping gas membrane distillation optimization procedure.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.sponsorshipUniversity Complutense of Madrid, UCM-BSCH
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26084
dc.identifier.doi10.1016/j.seppur.2011.06.031
dc.identifier.issn1383-5866
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.seppur.2011.06.031
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44266
dc.issue.number1
dc.journal.titleSeparation and purification technology
dc.language.isoeng
dc.page.final24
dc.page.initial12
dc.publisherElsevier Science BV
dc.relation.projectIDSB2009-0009
dc.relation.projectIDGR58/08
dc.relation.projectIDGR35/10-A
dc.rights.accessRightsrestricted access
dc.subject.cdu536
dc.subject.keywordBlack-currant juice
dc.subject.keywordPolymer assisted ultrafiltration
dc.subject.keywordVolatile aroma compounds
dc.subject.keywordReverse-osmosis
dc.subject.keywordOsmotic distillation
dc.subject.keywordSugarcane juice
dc.subject.keywordKiwifruit juice
dc.subject.keywordFruit Juices
dc.subject.keywordGrape juice
dc.subject.keywordRecovery
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleSweeping gas membrane distillation of sucrose aqueous solutions: response surface modeling and optimization
dc.typejournal article
dc.volume.number81
dcterms.references[1] F. Laganà, G. Barbieri, E. Drioli, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci. 166 (1) (2000) 1–11. [2] D.F. Jesús, M.F. Leite, L.F.M. Silva, R.D. Modesta, V.M. Matta, L.M.C. Cabral, Orange (Citrus sinensis) juice concentration by reverse osmosis, J. Food Eng. 81(2) (2007) 287–291. [3] S. Gunko, S. Verbych, M. Bryk, N. Hilal, Concentration of apple juice using direct contact membrane distillation, Desalination 190 (1–3) (2006) 117–124. [4] B. Jiao, A. Cassano, E. Drioli, Recent advances on membrane processes for the concentration of fruit juices: a review, J. Food Eng. 63 (3) (2004) 303–324. [5] E. Hernández, M. Raventós, J.M. Auleda, A. Ibarz, Concentration of apple and pear juices in a multi-plate freeze concentrator, Innovative Food Sci. Emerg. Technol. 10 (3) (2009) 348–355. [6] V. Milind Rane, K. Siddharth Jabade, Freeze concentration of sugarcane juice in a jaggery making process, Appl. Therm. Eng. 25(14–15) (2005) 2122–2137. [7] D. Pepper, A.C.J. Orchard, A.J. Merry, Concentration of tomato juice and other fruit juices by reverse osmosis, Desalination 53 (1–3) (1985) 157–166. [8] V. Álvarez, S. Álvarez, F.A. Riera, R. Álvarez, Permeate flux prediction in apple juice concentration by reverse osmosis, J. Membr. Sci. 127 (1) (1997) 25–34. [9] N. Pap, Sz Kertész, E. Pongrácz, L. Myllykoski, R.L. Keiski, Gy. Vatai, Zs. László, S. Beszédes, C. Hodúr, Concentration of blackcurrant juice by reverse osmosis, Desalination 241 (1–3) (2009) 256–264. [10] P.D. Gurak, L.M.C. Cabral, M.H.M. Rocha-Leão, V.M. Matta, S.P. Freitas, Quality evaluation of grape juice concentrated by reverse osmosis, J. Food Eng. 96(3) (2010) 421–426. [11] R.B. Rodrigues, H.C. Menezes, L.M.C. Cabral, M. Dornier, G.M. Rios, M. Reynes, Evaluation of reverse osmosis and osmotic evaporation to concentrate camu– camu juice (Myrciaria dubia), J. Food Eng. 63(1) (2004) 97–102. [12] V.M. Matta, R.H. Moretti, L.M.C. Cabral, Microfiltration and reverse osmosis for clarification and concentration of acerola juice, J. Food Eng. 61 (3) (2004) 477–482. [13] R. Ferrarini, A. Versari, S. Galassi, A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment, J. Food Eng. 50 (2) (2001) 113–116. [14] A.F.G. Bailey, A.M. Barbe, P.A. Hogan, R.A. Johnson, J. Sheng, The effect of ultrafiltration on the subsequent concentration of grape juice by osmotic distillation, J. Membr. Sci. 164(1–2) (2000) 195–204. [15] M. Yazdanshenas, S.A.R. Tabatabaee-Nezhad, M. Soltanieh, R. Roostaazad, A.B. Khoshfetrat, Contribution of fouling and gel polarization during ultrafiltration of raw apple juice at industrial scale, Desalination 258 (1–3) (2010) 194–200. [16] A. Cassano, L. Donato, E. Drioli, Ultrafiltration of kiwifruit juice: operating parameters, juice quality and membrane fouling, J. Food Eng. 79 (2) (2007) 613–621. [17] N.K. Saha, M. Balakrishnan, M. Ulbricht, Sugarcane juice ultrafiltration: FTIR and SEM analysis of polysaccharide fouling, J. Membr. Sci. 306 (1–2) (2007) 287–297. [18] P.K. Bhattacharya, S. Agarwal, S. De, U.V.S. Rama Gopal, Ultrafiltration of sugar cane juice for recovery of sugar: analysis of flux and retention, Sep. Purif. Technol. 21 (3) (2001) 247–259. [19] M.S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci. 285 (1–2) (2006) 4–29. [20] M. Khayet, Membranes and theoretical modelling of membrane distillation: A review, Advances in Colloid & Interface Sci. 164 (2011) 56–88. [21] Á. Kozák, E. Békássy-Molnár, G. Vatai, Production of black-currant juice concentrate by using membrane distillation, Desalination 241 (1–3) (2009) 309–314. [22] S. Nene, S. Kaur, K. Sumod, B. Joshi, K.S.M.S. Raghavarao, Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice, Desalination 147 (1–3) (2002) 157–160. [23] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Direct contact membrane distillation of sugar aqueous solutions, Sep. Sci. Technol. 34 (9) (1999) 1773–1801. [24] K. Bélafi-Bakó, B. Koroknai, Enhanced water flux in fruit juice concentration: Coupled operation of osmotic evaporation and membrane distillation, J. Membr. Sci. 269 (1–2) (2006) 187–193. [25] A. Cassano, E. Drioli, Concentration of clarified kiwifruit juice by osmotic distillation, J. Food Eng. 79 (4) (2007) 1397–1404. [26] H. Valdés, J. Romero, A. Saavedra, A. Plaza, V. Bubnovich, Concentration of nonjuice by means of osmotic distillation, J. Membr. Sci. 330 (1–2) (2009) 205–213. [27] S. Bandini, G.C. Sarti, Concentration of must through vacuum membrane distillation, Desalination 149 (1–3) (2002) 253–259. [28] S. Al-Asheh, F. Banat, M. Qtaishat, M. Al-Khateeb, Concentration of sucrose solutions via vacuum membrane distillation, Desalination 195 (1–3) (2006) 60–68. [29] R. Bagger-Jorgensen, A.S. Meyer, C. Varming, G. Jonsson, Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation, J. Food Eng., 64 (1) (2004) 23–31. [30] V. Soni, J. Abildskov, G. Jonsson, R. Gani, Modeling and analysis of vacuum membrane distillation for the recovery of volatile aroma compounds from black currant juice, J. Membr. Sci. 320 (1–2) (2008) 442–455. [31] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci. 155 (2) (1999) 291–307. [32] M. Khayet, M.P. Godino, J.I. Mengual, Thermal boundary layers in sweeping gas membrane distillation processes, AIChE J. 48 (7) (2002) 1488–1497. [33] M. Khayet, M.P. Godino, J.I. Mengual, Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method, Desalination 157 (1–3) (2003) 297–305. [34] M. Khayet, M.P. Godino, J.I. Mengual, Possibility of nuclear desalination through various membrane distillation configurations: a comparative study, Int. J. Nuclear Desalination 1 (2003) 30–46. [35] C. Cojocaru, G. Zakrzewska-Trznadel, Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration, J. Membr. Sci. 298 (1–2) (2007) 56–70. [36] C. Cojocaru, G. Zakrzewska-Trznadel, A. Miskiewicz, Removal of cobalt ions from aqueous solutions by polymer assisted ultrafiltration using experimental design approach: Part 2: Optimization of hydrodynamic conditions for a crossflow ultrafiltration module with rotating part, J. Hazard. Mater. 169 (1–3) (2009) 610–620. [37] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76 (5) (2008) 965–977. [38] R.H. Myers, D.C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New Jersey, 2002. [39] S. Akhnazarova, V. Kafarov, Experiment Optimization in Chemistry and Chemical Engineering, Mir Publishers, Moscow, 1982. [40] G. Derringer, R. Suich, Simultaneous optimization of several response variables, J. Qual. Technol. 12 (1980) 214–221. [41] K.L. Hsieh, L.I. Tong, H.P. Chiu, H.Y. Yeh, Optimization of a multi-response problem in Taguchi’s dynamic system, Comput. Ind. Eng. 49 (2005) 556–571.
dspace.entity.typePublication
relation.isAuthorOfPublication8e32e718-0959-4e6c-9e04-891d3d43d640
relation.isAuthorOfPublication.latestForDiscovery8e32e718-0959-4e6c-9e04-891d3d43d640

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
khayetNO17.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format

Collections