Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rotating beams in isotropic optical system

dc.contributor.authorAlieva Krasheninnikova, Tatiana
dc.contributor.authorAbramochkin, Eugeny
dc.contributor.authorAsenjo García, Ana
dc.contributor.authorRazueva, Evgeniya
dc.date.accessioned2023-06-20T03:46:28Z
dc.date.available2023-06-20T03:46:28Z
dc.date.issued2010-02-15
dc.description© 2010 OSA. T. Alieva thanks Spanish Ministry of Education and Science (project TEC2008-04105/TEC).
dc.description.abstractBased on the ray transformation matrix formalism, we propose a simple method for generation of paraxial beams performing anisotropic rotation in the phase space during their propagation through isotropic optical systems. The widely discussed spiral beams are the particular case of these beams. The propagation of these beams through the symmetric fractional Fourier transformer is demonstrated by numerical simulations.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministry of Education and Science
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27503
dc.identifier.doi10.1364/OE.18.003568
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.18.003568
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44418
dc.issue.number4
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final3573
dc.page.initial3568
dc.publisherThe Optical Society Of America
dc.relation.projectIDTEC2008-04105/TEC
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordParaxial light-beams
dc.subject.keywordSpiral-type beams
dc.subject.keywordTransformations
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleRotating beams in isotropic optical system
dc.typejournal article
dc.volume.number18
dcterms.references1. E. Abramochkin, and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102(3-4), 336–350 (1993). 2. E. Abramochkin, and V. Volostnikov, “Spiral-type beams: optical and quantum aspects,” Opt. Commun. 125(4-6), 302–323 (1996). 3. E. Abramochkin, and V. Volostnikov, “Spiral light beams,” Phys. Usp. 47(12), 1177–1203 (2004). 4. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Centrifugal transformation of the transverse structure of freely propagating paraxial light beams,” Opt. Lett. 31(6), 694–696 (2006). 5. A. Bekshaev, and M. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett. 31(14), 2199–2201 (2006). 6. S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60(9), 1168–1177 (1970). 7. R. Simon, and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17(2), 342–355 (2000). 8. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space,” J. Opt. Soc. Am. A 23(10), 2494–2500 (2006). 9. G. F. Calvo, “Wigner representation and geometric transformations of optical orbital angular momentum spatial modes,” Opt. Lett. 30(10), 1207–1209 (2005). 10. T. Alieva, and M. J. Bastiaans, “Orthonormal mode sets for the two-dimensional fractional Fourier transformation,” Opt. Lett. 32(10), 1226–1228 (2007). 11. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001). 12. M. J. Bastiaans, and T. Alieva, “First-order optical systems with unimodular eigenvalues,” J. Opt. Soc. Am. A 23(8), 1875–1883 (2006). 13. T. Alieva, and M. J. Bastiaans, “Mode mapping in paraxial lossless optics,” Opt. Lett. 30(12), 1461–1463 (2005). 14. A. Wünsche, “General Hermite and Laguerre two-dimensional polynomials,” J. Phys. Math. Gen. 33(17), 1603– 1629 (2000). 15. E. Abramochkin, and V. Volostnikov, “Generalized Gaussian beams,” J. Opt. A, Pure Appl. Opt. 6(5), S157– S161 (2004). 16. T. Alieva, and A. Barbé, “Self-fractional Fourier images,” J. Mod. Opt. 46, 83–99 (1999).
dspace.entity.typePublication
relation.isAuthorOfPublicationf1512137-328a-4bb6-9714-45de778c1be4
relation.isAuthorOfPublication.latestForDiscoveryf1512137-328a-4bb6-9714-45de778c1be4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlievaT14libre.pdf
Size:
206.7 KB
Format:
Adobe Portable Document Format

Collections