Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Exchange-bias-modulated inverse superconducting spin switch in CoO/Co/YBa_(2)Cu_(3)O_(7-δ)/La_(0.7)Ca_(0.3)MnO_(3) thin film hybrids

dc.contributor.authorNemes, Norbert Marcel
dc.contributor.authorVisani, C.
dc.contributor.authorSefrioui, Zouhair
dc.contributor.authorLeón Yebra, Carlos
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorIglesias, M.
dc.contributor.authorMompean, F.
dc.contributor.authorGarcía Hernández, M.
dc.date.accessioned2023-06-20T03:52:24Z
dc.date.available2023-06-20T03:52:24Z
dc.date.issued2010-01
dc.description© 2010 The American Physical Society. We thank A. Goldman for fruitful discussions within the framework of the joint US-Spain NSF Materials World Network Grant No. 709584. This work has been carried out with the support of the “Ramon y Cajal” contract and Grant No. MAT2007-30922E and MAT2008–065.
dc.description.abstractWe examine the interplay between ferromagnetism and superconductivity in bilayer and trilayer heterostructures based on Co, YBa_(2)Cu_(3)O_(7-δ) (YBCO), and La_(0.7)Ca_(0.3)MnO_(3) (LCMO) thin films grown on SrTiO_(3) substrates with typical thicknesses of 10–15 nm. We have measured magnetoresistance below the resistive-superconducting onset of the YBCO. Naturally oxidized antiferromagnetic CoO top layer films give rise to pronounced exchange bias, modifying the coercive field of the Co by several hundred Oe. This allows separating effects at coercivity, such as stray fields, from those of parallel vs. antiparallel magnetic alignment between top and bottom ferromagnetic layers. In bilayers of Co/YBCO and of LCMO/YBCO, we observe a small magnetoresistance peak centered at the coercive field of the ferromagnetic layer of at most 20%, which we attribute to the effect of stray fields generated in the domain state of the ferromagnet. In the case of the CoO/Co/YBCO/LCMO/SrTiO_(3) trilayer, aside from the peaks at coercivity, we observe a well-defined plateau of the magnetoresistance extending between the coercive fields of the LCMO and Co, with a width that is modified by the exchange-biased Co layer. Reactivity between Co and YBCO at the interface gives rise to a progressive deterioration in the superconducting transition temperature. Aged samples display magnetoresistance peaks at the coercive fields of the Co and LCMO characteristic of stray fields without the magnetoresistance plateau between them.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUS-Spain NSF Materials World Network
dc.description.sponsorshipSpanish MICINN under Contracts “Ramon y Cajal”
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30405
dc.identifier.doi10.1103/PhysRevB.81.024512
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.81.024512
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44594
dc.issue.number2
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID709584
dc.relation.projectIDMAT2007-30922E
dc.relation.projectIDMAT2008–065
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordHeterostructures
dc.subject.keywordSuperlattices
dc.subject.keywordMagnetization.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleExchange-bias-modulated inverse superconducting spin switch in CoO/Co/YBa_(2)Cu_(3)O_(7-δ)/La_(0.7)Ca_(0.3)MnO_(3) thin film hybrids
dc.typejournal article
dc.volume.number81
dcterms.references1) A. I. Buzdin, Rev. Mod. Phys., 77, 935, 2005. 2) F. S. Bergeret, A. F. Volkov, K. B. Efetov, Rev. Mod. Phys., 77, 1321, 2005. 3) J. Y. Gu, C. Y. You, J. S. Jiang, J. Pearson, Y. B. Bazaliy, S. D. Bader, Phys. Rev. Lett., 89, 267001, 2002. 4) A. Potenza, C. H. Marrows, Phys. Rev. B, 71, 180503(R), 2005. 5) I. C. Moraru, W. P. Pratt, N. O. Birge, Phys. Rev. Lett., 96, 037004, 2006. 6) F. Giazotto, F. Taddei, F. Beltram, R. Fazio, Phys. Rev. Lett., 97, 087001, 2006. 7) G. X. Miao, K. S. Yoon, T. S. Santos, J. S. Moodera, Phys. Rev. Lett., 98, 267001, 2007. 8) G.-X. Miao, A. V. Ramos, J. S. Moodera, Phys. Rev. Lett., 101, 137001, 2008. 9) V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, J. L. Martínez, S. G. E. te Velthuis, A. Hoffmann, Phys. Rev. Lett., 94, 057002, 2005. 10) A. Y. Rusanov, S. Habraken, J. Aarts, Phys. Rev. B, 73, 060505(R), 2006. 11) A. Singh, C. Surgers, H. v. Lohneysen, Phys. Rev. B, 75, 024513, 2007. 12) R. Steiner, P. Ziemann, Phys. Rev. B, 74, 094504, 2006. 13) D. Stamopoulos, E. Manios, M. Pissas, Phys. Rev. B, 75, 014501, 2007. 14) L. Y. Zhu, T. Y. Chen, C. L. Chien, Phys. Rev. Lett., 101, 017004, 2008. 15) A. Y. Aladyshkin, A. V. Silhanek, W. Gillijns, V. V. Moshchalkov, Supercond. Sci. Technol., 22, 053001, 2009. 16) D. Stamopoulos, E. Manios, M. Pissas, Supercond. Sci. Technol., 20, 1205, 2007. 17) P. Przyslupski, A. Tsarou, P. Dluzewski, W. Paszkowicz, R. Minikayev, K. Dybko, M. Sawicki, B. Dabrowski, C. Kimball, Supercond. Sci. Technol., 19, S38, 2006. 18) K. Senapati, R. C. Budhani, Phys. Rev. B, 71, 224507, 2005. 19) J. Hoppler, et al., Nature Mater., 8, 315, 2009. 20) J. Chakhalian, et al., Nat. Phys., 2, 244, 2006. 21) S. Soltan, J. Albrecht, H. U. Habermeier, Phys. Rev. B, 70, 144517, 2004. 22) H. Habermeier, G. Cristiani, R. Kremer, O. Lebedev, G. van Tendeloo, Physica C, 364, 298, 2001. 23) C. Visani, Ph.D. thesis, Universidad Complutense de Madrid, 2010. 24) F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, H. Zabel, Phys. Rev. B, 67, 134409, 2003. 25) M. Gruyters, D. Riegel, Phys. Rev. B, 63, 052401, 2000. 26) T. Gredig, I. Krivorotov, E. Dahlberg, J. Appl. Phys., 91, 7760, 2002. 27) S. Brems, K. Temst, C. Van Haesendonck, Phys. Rev. Lett., 99, 067201, 2007. 28) A. Hoffmann, Phys. Rev. Lett., 93, 097203, 2004. 29) Z. Sefrioui, M. Varela, V. Peña, D. Arias, C. León, J. Santamaría, J. E. Villegas, J. L. Martínez, W. Saldarriaga, P. Prieto, Appl. Phys. Lett., 81, 4568, 2002. 30) Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, J. Santamaría, Phys. Rev. B, 67, 214511, 2003. 31) V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, M. Varela, S. J. Pennycook, J. L. Martínez, Phys. Rev. B, 69, 224502, 2004. 32) M. A. López de la Torre, V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, J. L. Martínez, Phys. Rev. B, 73, 052503, 2006. 33) J. Santamaría, M. E. Gómez, J. L. Vicent, K. M. Krishnan, I. K. Schuller, Phys. Rev. Lett., 89, 190601, 2002. 34) M. Varela, A. Lupini, S. Pennycook, Z. Sefrioui, J. Santamaría, Solid-State Electron., 47, 2245, 2003. 35) S. Brems, A. Volodin, C. Van Haesendonck, K. Temst, J. Appl. Phys., 103, 113912, 2008. 36) J. Nogues, I. K. Schuller, J. Magn. Magn. Mater., 192, 203, 1999. 37) N. M. Nemes, et al., Phys. Rev. B, 78, 094515, 2008. 38) M. H. Jo, N. D. Mathur, N. K. Todd, M. G. Blamire, Phys. Rev. B, 61, (R)14905, 2000. 39) Z. Sefrioui, V. Cros, A. Barthelemy, V. Peña, C. León, J. Santamaría, M. Varela, S. J. Pennycook, Appl. Phys. Lett., 88, 022512, 2006. 40) M. van Zalk, M. Veldhorst, A. Brinkman, J. Aarts, H. Hilgenkamp, Phys. Rev. B, 79, 134509, 2009.
dspace.entity.typePublication
relation.isAuthorOfPublication697f3953-540b-435a-afc9-ec307315d667
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscovery697f3953-540b-435a-afc9-ec307315d667

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC26libre.pdf
Size:
597.35 KB
Format:
Adobe Portable Document Format

Collections