Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Newton partially flat minimal resistance body type problems

dc.contributor.authorDíaz Díaz, Jesús Ildefonso
dc.contributor.authorComte, M.
dc.date.accessioned2023-06-20T09:35:17Z
dc.date.available2023-06-20T09:35:17Z
dc.date.issued2005
dc.description.abstractWe study the flat region of stationary points of the functional integral(Omega) F(|del u(x)|) dx under the constraint u <= M, where Omega is a bounded domain in R-2. Here F( s) is a function which is concave for s small and convex for s large, and M > 0 is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when Omega is a ball. We also analyze some other qualitative properties. Moreover, we show the uniqueness of a radial solution minimizing the above mentioned functional. Finally, we consider nonsymmetric domains Omega and provide sufficient conditions which ensure that a stationary solution has a flat part.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15456
dc.identifier.doi10.4171/JEMS/33
dc.identifier.issn1435-9855
dc.identifier.officialurlhttp://www.ann.jussieu.fr/~comte/pdf/ComteDiaz8.pdf
dc.identifier.relatedurlhttp://www.ems.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49974
dc.issue.number4
dc.journal.titleJournal of the European Mathematical Society
dc.language.isoeng
dc.page.final411
dc.page.initial395
dc.publisherEuropean Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu517.95
dc.subject.cdu517.98
dc.subject.keywordNewton problem
dc.subject.keywordobstacle problem
dc.subject.keywordquasilinear elliptic operators
dc.subject.keywordflat solutions
dc.subject.ucmGeometría diferencial
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.subject.unesco1204.04 Geometría Diferencial
dc.titleOn the Newton partially flat minimal resistance body type problems
dc.typejournal article
dc.volume.number7
dcterms.referencesArmanini, E.: Sulla superficie di minima resistenza. Ann. Mat. Pura Appl. (3) 4, 131–149 (1900) JFM 31.0709.02 Botteron, B., Marcellini, P.: A general approach to the existence of minimizers of one-dimensional non-coercive integrals of the calculus of variations. Ann. Inst. H. Poincaré 8, 197–223 (1991) Zbl 0729.49002 MR 1096604 Brezis, H.: Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973) Zbl 0252.47055 MR 0348562 Brezis, H., Kinderlehrer, D.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23, 831–844 (1974) Zbl 0278.49011 MR 0361436 Buttazzo, G., Ferone, V., Kawohl, B.: Minimum problems over sets of concave functions and related questions. Math. Nachr. 173, 71–89 (1993) Zbl 0835.49001 MR 1336954 Buttazzo, G., Kawohl, B.: On Newton's problem of minimal resistance. Math. Intelligencer 15, 7–12 (1993) Zbl 0800.49038 MR 1240664 Comte, M., Díaz, J. I.: Paper in preparation Comte, M., Lachand-Robert, T.: Newton's problem of the body of minimal resistance under a single-impact assumption. Calc. Var. 12, 173–211 (2001) Zbl 0998.49012 MR 1821236 Eggers Jr., A. J., Resnikoff, M. M., Dennis, D. H.: Bodies of revolution having minimum drag at high supersonic airspeeds. NASA Report 1306 (1958) Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l'Académie des Sciences de Berlin 11, 217–273 (1755) Goldstine, H. H.: A History of the Calculus of Variations from the 17th through the 19th Century. Springer, Heidelberg (1980) Zbl 0452.49002 MR 0601774 Guasoni, P.: Problemi di ottimizzazione di forma su classi di insiemi convessi. Laurea Thesis, Univ. of Pisa (1996) Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1990) Zbl 0457.35001 MR 1786735 Lachand-Robert, T., Oudet, É.: Minimizing within convex bodies using a convex hull method. SIAM J. Optim., to appear Miele, A.: Theory of Optimum Aerodynamic Shapes. Academic Press, London (1965) Zbl 0265.76076 Newton, I.: Philosophiae Naturalis Principia Mathematica. (1686) Wagner, A.: A remark on Newton's resistance formula. Z. Angew. Math. Mech. ZAMM 79, 423–427 (1999) Zbl 0926.76101 MR 1690760
dspace.entity.typePublication
relation.isAuthorOfPublication34ef57af-1f9d-4cf3-85a8-6a4171b23557
relation.isAuthorOfPublication.latestForDiscovery34ef57af-1f9d-4cf3-85a8-6a4171b23557

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
51.pdf
Size:
162.43 KB
Format:
Adobe Portable Document Format

Collections