Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

4-manifolds, 3-fold covering spaces and ribbons.

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-21T02:02:57Z
dc.date.available2023-06-21T02:02:57Z
dc.date.issued1978-11
dc.description.abstractIt is shown that a PL, orientable 4-manifold with no 3- or 4-handles is a 3-fold irregular cover of the 4-ball, branched over a ribbon 2-manifold. The author also studies 2-fold branched cyclic covers and finds examples of surfaces in S4 whose 2-fold branched covers are again S4; this gives new examples of exotic involutions on S4 [cf. C. McA. Gordon, Proc. London Math. Soc. (3) 29 (1974), 98–110]. The conjecture that any closed, orientable 4-manifold is an irregular 4-fold branched cover of S4 is reduced to studying bordism classes of irregular 4-fold covers of S3 with covering space equal to a connected sum of copies of S1×S2.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17262
dc.identifier.doi10.2307/1998880
dc.identifier.issn0002-9947
dc.identifier.officialurlhttp://www.ams.org/journals/tran/1978-245-00/S0002-9947-1978-0511423-7/S0002-9947-1978-0511423-7.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64711
dc.journal.titleTransactions of the American Mathematical Society
dc.language.isoeng
dc.page.final467
dc.page.initial453
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.163
dc.subject.keywordCovering spaces
dc.subject.keywordTopological manifolds.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.title4-manifolds, 3-fold covering spaces and ribbons.
dc.typejournal article
dc.volume.number245
dcterms.referencesC. Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3) 28 (1974), 98-110. H. M. Hilden, Three-fold branched coverings of S3, Amer. J. Math. 98 (1976), 989-997. H. M. Hilden and J. M. Montesinos, A method of constructing 3-manifolds and its application to the computation of the μ-invariant, Proc. Sympos. in Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1977, pp. 477-485. P. Kim and J. Toilefson, Splitting the PL involutions on nonprime 3-manifolds (to appear). W. B. R. Lickorish, A representation of orientable, combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228. J. M. Montesinos, Heegaard diagrams for closed 4-manifolds, Proc. Georgia Geometric Topology Conf., 1977. I. Berstein and A. L. Edmonds, On the construction of branched coverings of low-dimensional manifolds (preprint). I. Berstein and A. L. Edmonds, The degree and branch set of a branched covering (preprint). T. Yajima, On a characterization of knot groups of some spheres in R4, Osaka J. Math. 6 (1969), 435-446.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos22.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format

Collections