4-manifolds, 3-fold covering spaces and ribbons.
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-21T02:02:57Z | |
dc.date.available | 2023-06-21T02:02:57Z | |
dc.date.issued | 1978-11 | |
dc.description.abstract | It is shown that a PL, orientable 4-manifold with no 3- or 4-handles is a 3-fold irregular cover of the 4-ball, branched over a ribbon 2-manifold. The author also studies 2-fold branched cyclic covers and finds examples of surfaces in S4 whose 2-fold branched covers are again S4; this gives new examples of exotic involutions on S4 [cf. C. McA. Gordon, Proc. London Math. Soc. (3) 29 (1974), 98–110]. The conjecture that any closed, orientable 4-manifold is an irregular 4-fold branched cover of S4 is reduced to studying bordism classes of irregular 4-fold covers of S3 with covering space equal to a connected sum of copies of S1×S2. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17262 | |
dc.identifier.doi | 10.2307/1998880 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.officialurl | http://www.ams.org/journals/tran/1978-245-00/S0002-9947-1978-0511423-7/S0002-9947-1978-0511423-7.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64711 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 467 | |
dc.page.initial | 453 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.163 | |
dc.subject.keyword | Covering spaces | |
dc.subject.keyword | Topological manifolds. | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | 4-manifolds, 3-fold covering spaces and ribbons. | |
dc.type | journal article | |
dc.volume.number | 245 | |
dcterms.references | C. Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3) 28 (1974), 98-110. H. M. Hilden, Three-fold branched coverings of S3, Amer. J. Math. 98 (1976), 989-997. H. M. Hilden and J. M. Montesinos, A method of constructing 3-manifolds and its application to the computation of the μ-invariant, Proc. Sympos. in Pure Math., vol. 32, Amer. Math. Soc., Providence, R.I., 1977, pp. 477-485. P. Kim and J. Toilefson, Splitting the PL involutions on nonprime 3-manifolds (to appear). W. B. R. Lickorish, A representation of orientable, combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. B. Mazur, A note on some contractible 4-manifolds, Ann. of Math. (2) 73 (1961), 221-228. J. M. Montesinos, Heegaard diagrams for closed 4-manifolds, Proc. Georgia Geometric Topology Conf., 1977. I. Berstein and A. L. Edmonds, On the construction of branched coverings of low-dimensional manifolds (preprint). I. Berstein and A. L. Edmonds, The degree and branch set of a branched covering (preprint). T. Yajima, On a characterization of knot groups of some spheres in R4, Osaka J. Math. 6 (1969), 435-446. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1