Publication:
J(--) glueballs and a low odderon intercept

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-03-03
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We report an odderon Regge trajectory emerging from a field theoretical Coulomb gauge QCD model for the odd signature J(PC) (P=C=-1) glueball states. The trajectory intercept is clearly smaller than the Pomeron and even the omega trajectory's intercept which provides an explanation for the nonobservation of the odderon in high energy scattering data. To further support this result we compare to glueball lattice data and also perform calculations with an alternative model based upon an exact Hamiltonian diagonalization for three constituent gluons.
Description
©2006 The American Physical Society. F. L. acknowledges the Fundacion del Amo-Universidad Complutense for financial support and the hospitality of the SLAC theory group. Thanks to E. Abreu, S. Brodsky, J. Vary, and P. Zerwas for useful conversations. Research supported by Spanish Grant No. MCYT FPA 2004-02602 (F. L.) and U. S. DOE Grant No. DE-FG02-97ER41048 (S. C.).
Unesco subjects
Keywords
Citation
[1] T. Regge, Nuovo Cimento 14, 951 (1959). [2] J. R. Pelaez and F. J. Yndurain, Phys. Rev. D 69, 114001 (2004). [3] Y. A. Simonov, Phys. Lett. B 249, 514 (1990). [4] F. J. Llanes-Estrada et al., Nucl. Phys. A710, 45 (2002). [5] H. B. Meyer and M. Teper, Phys. Lett. B 605, 344 (2005). [6] F. Brau and C. Semay, Phys. Rev. D 70, 014017 (2004). [7] R. Alkofer, C. S. Fischer, and F. J. Llanes Estrada, Phys. Lett. B 611, 279 (2005). [8] L. Lukaszuk and B. Nicolescu, Nuovo Cim. Lett. 8, 405 (1973). [9] C. Adloff et al. (H1 Collaboration), Phys. Lett. B 544, 35 (2002). [10] C. Ewerz, hep-ph/0306137. [11] C. E. Carlson et al., Phys. Lett. 99B, 353 (1981). [12] C. Michael, Nucl. Phys. A655, c12 (1999). [13] J. Cornwall and A. Soni, Phys. Lett. 120B, 431 (1983). [14] W. S. Hou and A. Soni, Phys. Rev. D 29, 101 (1984). [15] T. Barnes, F. E. Close, and S. Monaghan, Nucl. Phys. B198, 380 (1982). [16] A. Szczepaniak, E. S. Swanson, C. R. Ji, and S. R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996). [17] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65, 025012 (2002). [18] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281 (2001). [19] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Rev. Lett. 84, 1102 (2000). [20] F. J. Llanes-Estrada and S. R. Cotanch, Nucl. Phys. A697, 303 (2002). [21] F. J. Llanes-Estrada, S. R. Cotanch, A. Szczepaniak, and E. S. Swanson, Phys. Rev. C 70, 035202 (2004). [22] F. J. Llanes-Estrada and S. R. Cotanch, Phys. Lett. B 504, 15 (2001). [23] S. R. Cotanch, Prog. Part. Nucl. Phys. 50, 353 (2003). [24] J. A. M. Vermaseren, math-ph/0010025. [25] C. J. Morningstar and M. Peardon, Phys. Rev. D 60, 034509 (1999). [26] G. P. Lepage, Cornell University Report No. CLNS 80- 447, 1980 (unpublished). [27] P. Bicudo, hep-ph/0405223. [28] A. B. Kaidalov and Y. A. Simonov, Phys. Lett. B 477, 163 (2000). [29] G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005). [30] E. R. Berger et al., Eur. Phys. J. C 9, 491 (1999). [31] E. R. Berger et al., Eur. Phys. J. C 14, 673 (2000).
Collections