Which One Is the “Best”: a Cross-national Comparative Study of Students’ Strategy Evaluation in Equation Solving
dc.contributor.author | Jiang, Ronghuan | |
dc.contributor.author | Star, Jon | |
dc.contributor.author | Hästö, Peter | |
dc.contributor.author | Li, Lijia | |
dc.contributor.author | Liu, Ru-de | |
dc.contributor.author | Tuomela, Dimitri | |
dc.contributor.author | Joglar Prieto, Nuria | |
dc.contributor.author | Palkki, Riikka | |
dc.contributor.author | Abánades, Miguel | |
dc.contributor.author | Pejlare, Johanna | |
dc.date.accessioned | 2024-12-10T09:35:04Z | |
dc.date.available | 2024-12-10T09:35:04Z | |
dc.date.issued | 2022 | |
dc.description | This study was also supported by a grant from the Guangdong Science and Technology Department (2021A1515010936). | |
dc.description.abstract | This cross-national study examined students’ evaluation of strategies for solving linear equations, as well as the extent to which their evaluation criteria were related to their use of strategies and/or aligned with experts’ views about which strategy is the best. A total of 792 middle school and high school students from Sweden, Finland, and Spain participated in the study. Students were asked to solve twelve equations, provide multiple solving strategies for each equation, and select the best strategy among those they produced for each equation. Our results indicate that students’ evaluation of strategies was not strongly related to their initial preferences for using strategies. Instead, many students’ criteria were aligned with the flexibility goals, in that a strategy that takes advantages of task context was more highly valued than a standard algorithm. However, cross-national differences in strategy evaluation indicated that Swedish and Finnish students were more aligned with flexibility goals in terms of their strategy evaluation criteria, while Spanish students tended to consider standard algorithms better than other strategies. We also found that high school students showed more flexibility concerns than middle school students. Different emphases in educational practice and prior knowledge might explain these cross-national differences as well as the findings of developmental changes in students’ evaluation criteria. | |
dc.description.department | Depto. de Didáctica de las Ciencias Experimentales , Sociales y Matemáticas | |
dc.description.faculty | Fac. de Educación | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Guangdong Science and Technology Department (2021A1515010936) | |
dc.description.status | pub | |
dc.identifier.citation | Jiang, R., Star, J. R., Hästö, P., Li, L., Liu, R.-d., Tuomela, D., Prieto, N. J., Palkki, R., Abánades, M. Á., & Pejlare, J. (2023). Which One Is the “Best”: a Cross-national Comparative Study of Students’ Strategy Evaluation in Equation Solving. International Journal of Science and Mathematics Education, 21(4), 1127-1151. https://doi.org/10.1007/S10763-022-10282-6 | |
dc.identifier.doi | 10.1007/s10763-022-10282-6 | |
dc.identifier.essn | 1573-1774 | |
dc.identifier.issn | 1571-0068 | |
dc.identifier.officialurl | https://doi.org/10.1007/s10763-022-10282-6 | |
dc.identifier.relatedurl | https://produccioncientifica.ucm.es/documentos/62dc5f45a3beec219592c697 | |
dc.identifier.relatedurl | https://www.scopus.com/record/display.uri?eid=2-s2.0-85130108126&origin=resultslist | |
dc.identifier.relatedurl | https://www.webofscience.com/wos/alldb/full-record/WOS:000796307000001 | |
dc.identifier.relatedurl | https://link.springer.com/content/pdf/10.1007/s10763-022-10282-6.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/112292 | |
dc.issue.number | 4 | |
dc.journal.title | Which One Is the “Best”: a Cross-national Comparative Study of Students’ Strategy Evaluation in Equation Solving | |
dc.language.iso | eng | |
dc.page.final | 1151 | |
dc.page.initial | 1127 | |
dc.publisher | Springer Nature | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessRights | embargoed access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject.cdu | 51 | |
dc.subject.cdu | 512 | |
dc.subject.cdu | 512.644 | |
dc.subject.cdu | 51:37.02 | |
dc.subject.keyword | Strategy evaluation | |
dc.subject.keyword | Cross-national study | |
dc.subject.keyword | Flexibility | |
dc.subject.keyword | Equation solving | |
dc.subject.keyword | Algebra | |
dc.subject.keyword | Evaluación estratégica | |
dc.subject.keyword | Estudio internacional | |
dc.subject.keyword | Flexibilidad | |
dc.subject.keyword | Resolver ecuaciones | |
dc.subject.keyword | Álgebra | |
dc.subject.ucm | Enseñanza de las Matemáticas | |
dc.subject.unesco | 12 Matemáticas | |
dc.title | Which One Is the “Best”: a Cross-national Comparative Study of Students’ Strategy Evaluation in Equation Solving | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 21 | |
dcterms.references | Referencias bibliográficas: • An, T., Mintos, A., & Yigit, M. (2012). A cross-national standards analysis: Quadratic equations and functions. In L. R. Van Zoest, J.-J. Lo, & J. L. Kratky (Eds.), Proceedings of the 34th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 11, p. 120). ERIC (ED584829). • Australian Education Ministers. (2006). Statements of learning for mathematics. Curriculum Corporations. • Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 1–33). Lawrence Erlbaum Associates. • Baroody, A. J., & Dowker, A. (Eds.) (2013). The development of arithmetic concepts and skills: Constructive adaptive expertise. Routledge. DOI: 10.4324/9781410607218 • Bisanz, J. (2003). Arithmetical development: Commentary on Chapters 1 through 8 and reflections on directions. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructive adaptive expertise (p. 435). Lawrence Erlbaum Associates. • Bråting, K. (2015). Teaching traditions in Swedish school algebra–a project description. In I. Bjarnadottir, F. Furinghetti, J. Prytz, & G. Schubring (Eds.), Proceedings of the Third International Conference on the History of Mathematics Education (pp. 81–92). Uppsala Universitet. • Brown, P., Keenan, J. M., & Potts, G. R. (1986). The self-reference effect with imagery encoding. Journal of Personality and Social Psychology, 51(5), 897–906. 10.1037/0022-3514.51.5.897 DOI: 10.1037/0022-3514.51.5.897 • Cai, J. (2004). Why do U.S. and Chinese students think differently in mathematical problem solving?: Impact of early algebra learning and teachers’ beliefs. The Journal of Mathematical Behavior, 23(2), 135–167. 10.1016/j.jmathb.2004.03.004 DOI: 10.1016/j.jmathb.2004.03.004 • Carr, P. B., & Steele, C. M. (2009). Stereotype threat and inflexible perseverance in problem solving. Journal of Experimental Social Psychology, 45(4), 853–859. 10.1016/j.jesp.2009.03.003 DOI: 10.1016/j.jesp.2009.03.003 • Carroll, W. M. (1999). Invented computational procedures of students in a standards-based curriculum. The Journal of Mathematical Behavior, 18(2), 111–121. 10.1016/S0732-3123(99)00024-3 DOI: 10.1016/S0732-3123(99)00024-3 • Casas, A. M., & Garcia Castellar, R. (2004). Mathematics education and learning disabilities in Spain. Journal of Learning Disabilities, 37(1), 62–73. 10.1177/00222194040370010701 DOI: 10.1177/00222194040370010701 • Chaiken, S., Ledgerwood, A. (2012). A theory of heuristic and systematic information processing. In P. A. M. Van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), A Handbook of Theories of Social Psychology (pp. 246–266). SAGE. • Dahl, D. W., & Hoeffler, S. (2004). Visualizing the self: Exploring the potential benefits and drawbacks for new product evaluation. Journal of Product Innovation Management, 21(4), 259–267. 10.1111/j.0737-6782.2004.00077.x DOI: 10.1111/j.0737-6782.2004.00077.x • De Smedt, B., Torbeyns, J., Stassens, N., Ghesquière, P., & Verschaffel, L. (2010). Frequency, efficiency and flexibility of indirect addition in two learning environments. Learning and Instruction, 20(3), 205–215. 10.1016/j.learninstruc.2009.02.020 DOI: 10.1016/j.learninstruc.2009.02.020 • DeCaro, M. S. (2016). Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics. Memory & Cognition, 44(7), 1138–1148. 10.3758/s13421-016-0614-y DOI: 10.3758/s13421-016-0614-y • De Neys, W. (2006). Automatic–heuristic and executive–analytic processing during reasoning: Chronometric and dual-task considerations. The Quarterly Journal of Experimental Psychology, 59(6), 1070–1100. 10.1080/02724980543000123 DOI: 10.1080/02724980543000123 • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. 10.1146/annurev-psych-113011-143750 DOI: 10.1146/annurev-psych-113011-143750 • Ellis, S. (1997). Strategy choice in sociocultural context. Developmental Review, 17(4), 490–524. 10.1006/drev.1997.0444 DOI: 10.1006/drev.1997.0444 • Fagginger Auer, M. F., Hickendorff, M., & van Putten, C. M. (2016). Solution strategies and adaptivity in multidigit division in a choice/no-choice experiment: Student and instructional factors. Learning and Instruction, 41, 52–59. 10.1016/j.learninstruc.2015.09.008 DOI: 10.1016/j.learninstruc.2015.09.008 • Foxman, D. (1999). Mathematics textbooks across the world: Some evidence from the Third International Mathematics and Science Study (TIMSS). National Foundation for Educational Research. • Franke, M. L., & Carey, D. A. (1997). Young children’s perceptions of mathematics in problem-solving environments. Journal for Research in Mathematics Education, 28(1), 8–25. https://doi.org/10.5951/jresematheduc.28.1.0008 • Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8(2), 242–256. 10.1037//0882-7974.8.2.242 DOI: 10.1037//0882-7974.8.2.242 • Givvin, K. B., Geller, E. H., & Stigler, J. W. (2019). How teachers introduce algebra and how it might affect students’ beliefs about what it means to “do” mathematics. In C. Kilhamn & R. Säljö (Eds.), Encountering algebra (pp. 139–163). Springer. 10.1007/978-3-030-17577-1 DOI: 10.1007/978-3-030-17577-1 • González-Astudillo, M. T., & Sierra-Vázquez, M. (2004). Textbook analysis methodology of mathematics: Critical points in secondary education in Spain during the twentieth century. Science Teaching: A Review of Research and Teaching Experience, 22(3), 705. • Halinen, H., Joki, L., Näätänen, P., Pehkonen, S., & Sainio, S. (1991). On the trend of mathematics teaching in the comprehensive school in the 1990’s. VAPK-kustannus. • Hatisaru, V. (2021). A reflection on Star and Seifert’s operationalisation of flexibility in equation solving. For the Learning of Mathematics, 41(2), 37–44. • Hemmi, K., Lepik, M., & Viholainen, A. (2013). Analysing proof-related competences in Estonian, Finnish and Swedish mathematics curricula—Towards a framework of developmental proof. Journal of Curriculum Studies, 45(2), 37–44. 10.1080/00220272.2012.754055 DOI: 10.1080/00220272.2012.754055 • Horsley, M., & Sikorová, Z. (2015). Classroom teaching and learning resources: International comparisons from TIMSS − A preliminary review. Orbis Scholae, 8(2), 43–60. https://www.ceeol.com/search/article-detail?id=36707 DOI: 10.14712/23363177.2015.65 • Imbo, I., Duverne, S., & Lemaire, P. (2007). Working memory, strategy execution, and strategy selection in mental arithmetic. The Quarterly Journal of Experimental Psychology, 60(9), 1246–1264. 10.1080/17470210600943419 DOI: 10.1080/17470210600943419 • Imbo, I., & LeFevre, J.-A. (2009). Cultural differences in complex addition: Efficient Chinese versus adaptive Belgians and Canadians. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1465–1476. 10.1037/a0017022 DOI: 10.1037/a0017022 • Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elementary school children: Working memory and individual differences. Journal of Experimental Child Psychology, 96(4), 284–309. 10.1016/j.jecp.2006.09.001 DOI: 10.1016/j.jecp.2006.09.001 • Impecoven-Lind, L. S., & Foegen, A. (2010). Teaching algebra to students with learning disabilities. Intervention in School and Clinic, 46(1), 31–37. 10.1177/1053451210369520 DOI: 10.1177/1053451210369520 • Jiang, C., Hwang, S., & Cai, J. (2014). Chinese and Singaporean sixth-grade students’ strategies for solving problems about speed. Educational Studies in Mathematics, 87(1), 27–50. 10.1007/s10649-014-9559-x DOI: 10.1007/s10649-014-9559-x • Jiang, R., Li, X., Fernández, C., & Fu, X. (2017). Students’ performance on missing-value word problems: A cross-national developmental study. European Journal of Psychology of Education, 32(4), 551–570. 10.1007/s10212-016-0322-9 DOI: 10.1007/s10212-016-0322-9 • Jiang, R., Liu, R.-D., Star, J., Zhen, R., Wang, J., Hong, W., Jiang, S., Sun, Y., & Fu, X. (2021). How mathematics anxiety affects students’ inflexible perseverance in mathematics problem-solving: Examining the mediating role of cognitive reflection. British Journal of Educational Psychology, 91(1), 237–260. 10.1111/bjep.12364 DOI: 10.1111/bjep.12364 • Jitendra, A. K., Griffin, C. C., Haria, P., Leh, J., Adams, A., & Kaduvettoor, A. (2007). A comparison of single and multiple strategy instruction on third-grade students’ mathematical problem solving. Journal of Educational Psychology, 99(1), 115–127. 10.1037/0022-0663.99.1.115 DOI: 10.1037/0022-0663.99.1.115 • Joglar-Prieto, N., Abánades-Astudillo, M. Á., & Star, J. R. (2018). Flexibilidad matemática y resolución de ecuaciones lineales. Uno: Revista de Didáctica de las Matematicas, 80, 51–57. • Karlen, Y. (2015). Nutzungshäufigkeit von Lernstrategien und metakognitives Strategiewissen in der Oberstufe des Gymnasiums: Entwicklung und Zusammenhänge. Zeitschrift für Bildungsforschung, 5(2), 159–175. 10.1007/s35834-015-0123-2 DOI: 10.1007/s35834-015-0123-2 • Keleş, T., & Yazgan, Y. (2021). Gifted eighth, ninth, tenth and eleventh graders’ strategic flexibility in non-routine problem solving. The Journal of Educational Research, 114(4), 332–345. 10.1080/00220671.2021.1937913 DOI: 10.1080/00220671.2021.1937913 • Kilhamn, C., & Säljö, R. (Eds.) (2019). Encountering algebra: A comparative study of classrooms in Finland, Norway, Sweden, and the USA. Springer. 10.1007/978-3-030-17577-1 DOI: 10.1007/978-3-030-17577-1 • Kuhn, D., & Pearsall, S. (1998). Relations between metastrategic knowledge and strategic performance. Cognitive Development, 13(2), 227–247. 10.1016/S0885-2014(98)90040-5 DOI: 10.1016/S0885-2014(98)90040-5 • Lemaire, P., & Lecacheur, M. (2002). Children’s strategies in computational estimation. Journal of Experimental Child Psychology, 82(4), 281–304. 10.1016/s0022-0965(02)00107-8 DOI: 10.1016/s0022-0965(02)00107-8 • Liu, R.-D., Wang, J., Star, J. R., Zhen, R., Jiang, R.-H., & Fu, X.-C. (2018). Turning potential flexibility into flexible performance: Moderating effect of self-efficacy and use of flexible cognition. Frontiers in Psychology, 9, 646. 10.3389/fpsyg.2018.00646 DOI: 10.3389/fpsyg.2018.00646 • López, N. R., & Betancor, J. B. (2007). Mathematics education in Spain [La educación matemática en España]. Educational Praxis (Brazil)[Práxis Educativa (Brasil)], 2(2), 151–160. • Luwel, K., Lemaire, P., & Verschaffel, L. (2005). Children’s strategies in numerosity judgment. Cognitive Development, 20(3), 448–471. 10.1016/j.cogdev.2005.05.007 DOI: 10.1016/j.cogdev.2005.05.007 • Luwel, K., Torbeyns, J., & Verschaffel, L. (2003). The relation between metastrategic knowledge, strategy use and task performance: Findings and reflections from a numerosity judgement task. European Journal of Psychology of Education, 18(4), 425–447. 10.1007/BF03173245 DOI: 10.1007/BF03173245 • Marewski, J. N., & Schooler, L. J. (2011). Cognitive niches: An ecological model of strategy selection. Psychological Review, 118(3), 393–437. 10.1037/a0024143 DOI: 10.1037/a0024143 • Muldoon, K., Simms, V., Towse, J., Menzies, V., & Yue, G. (2011). Cross-cultural comparisons of 5-year-olds’ estimating and mathematical ability. Journal of Cross-Cultural Psychology, 42(4), 669–681. 10.1177/0022022111406035 DOI: 10.1177/0022022111406035 • National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. US Department of Education. • Newton, K. J., Lange, K., & Booth, J. L. (2019). Mathematical flexibility: Aspects of a continuum and the role of prior knowledge. The Journal of Experimental Education, 88(4), 503–515. 10.1080/00220973.2019.1586629 DOI: 10.1080/00220973.2019.1586629 • Nistal, A. A., Van Dooren, W., & Verschaffel, L. (2014). Improving students’ representational flexibility in linear-function problems: An intervention. Educational Psychology, 34(6), 763–786. 10.1080/01443410.2013.785064 DOI: 10.1080/01443410.2013.785064 • O’Sullivan, J., & Pressley, M. (1984). Completeness of instruction and strategy transfer. Journal of Experimental Child Psychology, 38(2), 275–288. 10.1016/0022-0965(84)90126-7 DOI: 10.1016/0022-0965(84)90126-7 • Oikarainen, V. (2013). A model to analyse algebraic tasks solved by students: A comparative study from Finland and Norway [Master's thesis]. University of Agder. • Pehkonen, E. (2008). Problem solving in mathematics education in Finland. Paper presented at the Symposium on the Occasion of the 100th Anniversary of ICMI (International Commission on Mathematical Instruction), Rome. • Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100. 10.1016/j.jecp.2015.07.014 DOI: 10.1016/j.jecp.2015.07.014 • Reinhardtsen, J., & Givvin, K. B. (2019). The fifth lesson: Students’ responses to a patterning task across the four countries. In C. Kilhamn & R. Säljö (Eds.), Encountering algebra (pp. 165–234). Springer. 10.1007/978-3-030-17577-1 DOI: 10.1007/978-3-030-17577-1 • Rico, L. (1995). Errors and difficulties in mathematics learning [Errores y dificultades en el aprendizaje de las matemáticas]. In J. Kilpatrick, P. Gómez, & L. Rico (Eds.), Educación matemática. Errores y dificultades de los estudiantes. Resolución de problemas. Evaluación. Historia (pp. 69–108). Una Empresa Docente. • Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge?: An experimental study on learning to solve equations. Journal of Educational Psychology, 99(3), 561–574. 10.1037/0022-0663.99.3.561 DOI: 10.1037/0022-0663.99.3.561 • Robitaille, D. F., & Travers, K. J. (1992). International studies of achievement in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 687–709). National Council of Teachers of Mathematics. • Röj-Lindberg, A.-S., & Partanen, A.-M. (2019). Learning to solve equations in three Swedish-speaking classrooms in Finland. In C. Kilhamn & R. Säljö (Eds.), Encountering Algebra (pp. 111–138). Springer. 10.1007/978-3-030-17577-1 DOI: 10.1007/978-3-030-17577-1 • Sawyer, R. J., Graham, S., & Harris, K. R. (1992). Direct teaching, strategy instruction, and strategy instruction with explicit self-regulation: Effects on the composition skills and self-efficacy of students with learning disabilities. Journal of Educational Psychology, 84(3), 340–352. 10.1037/0022-0663.84.3.340 DOI: 10.1037/0022-0663.84.3.340 • Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47(6), 1525–1538. 10.1037/a0024997 DOI: 10.1037/a0024997 • Shaw, S. T., Pogossian, A. A., & Ramirez, G. (2020). The mathematical flexibility of college students: The role of cognitive and affective factors. British Journal of Educational Psychology, 90(4), 981–996. 10.1111/bjep.12340 DOI: 10.1111/bjep.12340 • Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children’s strategy choices and strategy discoveries. Psychological Science, 9(5), 405–410. 10.1111/1467-9280.00076 DOI: 10.1111/1467-9280.00076 • Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 33, pp. 1–42). JAI. 10.1016/S0065-2407(05)80003-5 DOI: 10.1016/S0065-2407(05)80003-5 • Siegler, R. S., & Lemaire, P. (1997). Older and younger adults’ strategy choices in multiplication: Testing predictions of ASCM using the choice/no-choice method. Journal of Experimental Psychology: General, 126(1), 71–92. 10.1037/0096-3445.126.1.71 DOI: 10.1037/0096-3445.126.1.71 • Siegler, R. S., & Shipley, C. (1995). Variation, selection, and cognitive change. In T. Simon & G. Halford (Eds.), Developing cognitive competence: New approaches to process modeling (pp. 31–76). Lawrence Erlbaum Associates. • Singapore Ministry of Education. (2006). Secondary mathematics syllabuses. Retrieved 2006 from https://www.moe.gov.sg/education/syllabuses/sciences/files/maths-secondary.pdf • Socas, M. M., Ruano, R. M., & Domínguez, J. H. (2016). Análisis Didáctico del proceso matemático de Modelización en alumnos de Secundaria. Avances de Investigación en Educación Matemática, 9, 21–41. 10.35763/aiem.v0i9.146 DOI: 10.35763/aiem.v0i9.146 • Sood, S., & Forehand, M. (2005). On self-referencing differences in judgment and choice. Organizational Behavior and Human Decision Processes, 98(2), 144–154. 10.1016/j.obhdp.2005.05.005 DOI: 10.1016/j.obhdp.2005.05.005 • Star, J. R., & Madnani, J. (2004). Which way is "best"? Students’ conceptions of optimal strategies for solving equations. Proceedings of the twenty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 483–490). OISE/UT. • Star, J. R., Newton, K., Pollack, C., Kokka, K., Rittle-Johnson, B., & Durkin, K. (2015a). Student, teacher, and instructional characteristics related to students’ gains in flexibility. Contemporary Educational Psychology, 41, 198–208. 10.1016/j.cedpsych.2015.03.001 DOI: 10.1016/j.cedpsych.2015.03.001 • Star, J. R., & Newton, K. J. (2009). The nature and development of experts’ strategy flexibility for solving equations. ZDM Mathematics Education, 41(5), 557–567. 10.1007/s11858-009-0185-5 DOI: 10.1007/s11858-009-0185-5 • Star, J. R., Pollack, C., Durkin, K., Rittle-Johnson, B., Lynch, K., Newton, K., & Gogolen, C. (2015b). Learning from comparison in algebra. Contemporary Educational Psychology, 40, 41–54. 10.1016/j.cedpsych.2014.05.005 DOI: 10.1016/j.cedpsych.2014.05.005 • Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6), 565–579. 10.1016/j.learninstruc.2007.09.018 DOI: 10.1016/j.learninstruc.2007.09.018 • Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. Contemporary Educational Psychology, 31(3), 280–300. 10.1016/j.cedpsych.2005.08.001 DOI: 10.1016/j.cedpsych.2005.08.001 • Star, J. R., Tuomela, D., Prieto, N. J., Hästö, P., Palkki, R., Abánades, M. Á., et al. (2022). Exploring students’ procedural flexibility in three countries. International Journal of STEM Education, 9(1), 1–18. 10.1186/s40594-021-00322-y DOI: 10.1186/s40594-021-00322-y • Threlfall, J. (2009). Strategies and flexibility in mental calculation. ZDM Mathematics Education, 41(5), 541–555. 10.1007/s11858-009-0195-3 DOI: 10.1007/s11858-009-0195-3 • Tian, J., Braithwaite, D. W., & Siegler, R. S. (2021). Distributions of textbook problems predict student learning: Data from decimal arithmetic. Journal of Educational Psychology, 113(3), 516–529. 10.1037/edu0000618 DOI: 10.1037/edu0000618 • Torbeyns, J., & Verschaffel, L. (2013). Efficient and flexible strategy use on multi-digit sums: A choice/no-choice study. Research in Mathematics Education, 15(2), 129–140. 10.1080/14794802.2013.797745 DOI: 10.1080/14794802.2013.797745 • Torbeyns, J., Verschaffel, L., & Ghesquiere, P. (2004). Strategy development in children with mathematical disabilities: Insights from the choice/no-choice method and the chronological-age/ability-level—match design. Journal of Learning Disabilities, 37(2), 119–131. 10.1177/00222194040370020301 DOI: 10.1177/00222194040370020301 • Vega-Castro, D., Molina, M., & Castro, E. (2012). Sentido estructural de estudiantes de bachillerato en tareas de simplificación de fracciones algebraicas que involucran igualdades notables. Revista Latinoamericana de Investigación en Matemática Educativa, 15(2), 233–258. • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24(3), 335–359. 10.1007/Bf03174765 DOI: 10.1007/Bf03174765 • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2011). Analyzing and developing strategy flexibility in mathematics education. In J. Elen, E. Stahl, R. Bromme, & G. Clarebout (Eds.), Links between beliefs and cognitive flexibility (pp. 175–197). Springer. 10.1007/978-94-007-1793-0_10 DOI: 10.1007/978-94-007-1793-0_10 • Vicente, S., Sánchez, R., & Verschaffel, L. (2020). Word problem solving approaches in mathematics textbooks: A comparison between Singapore and Spain. European Journal of Psychology of Education, 35(3), 567–587. 10.1007/s10212-019-00447-3 DOI: 10.1007/s10212-019-00447-3 • Wang, J., Liu, R.-D., Star, J. R., Liu, Y., & Zhen, R. (2019). The moderating effect of regulatory focus in the relationship between potential flexibility and practical flexibility. Contemporary Educational Psychology, 56, 218–227. 10.1016/j.cedpsych.2019.01.013 DOI: 10.1016/j.cedpsych.2019.01.013 • West, P. M., Huber, J., & Min, K. S. (2004). Altering experienced utility: The impact of story writing and self-referencing on preferences. Journal of Consumer Research, 31(3), 623–630. 10.1086/425097 DOI: 10.1086/425097 • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 to 8: A practice guide (NCEE 2012-4055). National Center for Education Evaluation and Regional Assistance. • Xu, C., Wells, E., LeFevre, J.-A., & Imbo, I. (2014). Strategic flexibility in computational estimation for Chinese- and Canadian-educated adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1481–1497. 10.1037/a0037346 DOI: 10.1037/a0037346 • Xu, L., Liu, R.-D., Star, J. R., Wang, J., Liu, Y., & Zhen, R. (2017). Measures of potential flexibility and practical flexibility in equation solving. Frontiers in Psychology, 8, 1368. 10.3389/fpsyg.2017.01368 DOI: 10.3389/fpsyg.2017.01368 • Yakes, C., & Star, J. R. (2011). Using comparison to develop flexibility for teaching algebra. Journal of Mathematics Teacher Education, 14(3), 175–191. 10.1007/s10857-009-9131-2 DOI: 10.1007/s10857-009-9131-2 • Yang, D.-C., & Sianturi, I. A. J. (2020). Analysis of algebraic problems intended for elementary graders in Finland, Indonesia, Malaysia, Singapore, and Taiwan. Educational Studies, 48(1), 75–97. 10.1080/03055698.2020.1740977 • Yeap, B.-H., Ferrucci, B. J., Carter, J. A. (2006). Comparative study of arithmetic problems in Singaporean and American mathematics textbooks. In F. K. S. Leung, K. D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions—A comparative study of East Asia and the West (pp. 213–225). Springer. https://doi.org/10.1007/0-387-29723-5_13 • Zohar, A. (2012). Explicit teaching of metastrategic knowledge: Definitions, students’ learning, and teachers’ professional development. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 197–223). Springer Netherlands.10.1007/978-94-007-2132-6_9 DOI: 10.1007/978-94-007-2132-6_9 • Zohar, A., & David, A. B. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition and Learning, 3(1), 59–82. 10.1007/s11409-007-9019-4 DOI: 10.1007/s11409-007-9019-4 • Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low-and high-achieving students. Learning and Instruction, 18(4), 337–353. 10.1016/j.learninstruc.2007.07.001 DOI: 10.1016/j.learninstruc.2007.07.001 • Torbeyns, J., & Verschaffel, L. (2013). Efficient and flexible strategy use on multi-digit sums: A choice/no-choice study. Research in Mathematics Education, 15(2), 129–140. 10.1080/14794802.2013.797745 DOI: 10.1080/14794802.2013.797745 • Torbeyns, J., Verschaffel, L., & Ghesquiere, P. (2004). Strategy development in children with mathematical disabilities: Insights from the choice/no-choice method and the chronological-age/ability-level—match design. Journal of Learning Disabilities, 37(2), 119–131. 10.1177/00222194040370020301 DOI: 10.1177/00222194040370020301 • Vega-Castro, D., Molina, M., & Castro, E. (2012). Sentido estructural de estudiantes de bachillerato en tareas de simplificación de fracciones algebraicas que involucran igualdades notables. Revista Latinoamericana de Investigación en Matemática Educativa, 15(2), 233–258. • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2009). Conceptualizing, investigating, and enhancing adaptive expertise in elementary mathematics education. European Journal of Psychology of Education, 24(3), 335–359. 10.1007/Bf03174765 DOI: 10.1007/Bf03174765 • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2011). Analyzing and developing strategy flexibility in mathematics education. In J. Elen, E. Stahl, R. Bromme, & G. Clarebout (Eds.), Links between beliefs and cognitive flexibility (pp. 175–197). Springer. 10.1007/978-94-007-1793-0_10 DOI: 10.1007/978-94-007-1793-0_10 • Vicente, S., Sánchez, R., & Verschaffel, L. (2020). Word problem solving approaches in mathematics textbooks: A comparison between Singapore and Spain. European Journal of Psychology of Education, 35(3), 567–587. 10.1007/s10212-019-00447-3 DOI: 10.1007/s10212-019-00447-3 • Wang, J., Liu, R.-D., Star, J. R., Liu, Y., & Zhen, R. (2019). The moderating effect of regulatory focus in the relationship between potential flexibility and practical flexibility. Contemporary Educational Psychology, 56, 218–227. 10.1016/j.cedpsych.2019.01.013 DOI: 10.1016/j.cedpsych.2019.01.013 • West, P. M., Huber, J., & Min, K. S. (2004). Altering experienced utility: The impact of story writing and self-referencing on preferences. Journal of Consumer Research, 31(3), 623–630. 10.1086/425097 DOI: 10.1086/425097 • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 to 8: A practice guide (NCEE 2012-4055). National Center for Education Evaluation and Regional Assistance. • Xu, C., Wells, E., LeFevre, J.-A., & Imbo, I. (2014). Strategic flexibility in computational estimation for Chinese- and Canadian-educated adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(5), 1481–1497. 10.1037/a0037346 DOI: 10.1037/a0037346 • Xu, L., Liu, R.-D., Star, J. R., Wang, J., Liu, Y., & Zhen, R. (2017). Measures of potential flexibility and practical flexibility in equation solving. Frontiers in Psychology, 8, 1368. 10.3389/fpsyg.2017.01368 DOI: 10.3389/fpsyg.2017.01368 • Yakes, C., & Star, J. R. (2011). Using comparison to develop flexibility for teaching algebra. Journal of Mathematics Teacher Education, 14(3), 175–191. 10.1007/s10857-009-9131-2 DOI: 10.1007/s10857-009-9131-2 • Yang, D.-C., & Sianturi, I. A. J. (2020). Analysis of algebraic problems intended for elementary graders in Finland, Indonesia, Malaysia, Singapore, and Taiwan. Educational Studies, 48(1), 75–97. 10.1080/03055698.2020.1740977 • Yeap, B.-H., Ferrucci, B. J., Carter, J. A. (2006). Comparative study of arithmetic problems in Singaporean and American mathematics textbooks. In F. K. S. Leung, K. D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions—A comparative study of East Asia and the West (pp. 213–225). Springer. https://doi.org/10.1007/0-387-29723-5_13 • Zohar, A. (2012). Explicit teaching of metastrategic knowledge: Definitions, students’ learning, and teachers’ professional development. In A. Zohar & Y. J. Dori (Eds.), Metacognition in science education: Trends in current research (pp. 197–223). Springer Netherlands.10.1007/978-94-007-2132-6_9 DOI: 10.1007/978-94-007-2132-6_9 • Zohar, A., & David, A. B. (2008). Explicit teaching of meta-strategic knowledge in authentic classroom situations. Metacognition and Learning, 3(1), 59–82. 10.1007/s11409-007-9019-4 DOI: 10.1007/s11409-007-9019-4 • Zohar, A., & Peled, B. (2008). The effects of explicit teaching of metastrategic knowledge on low-and high-achieving students. Learning and Instruction, 18(4), 337–353. 10.1016/j.learninstruc.2007.07.001 DOI: 10.1016/j.learninstruc.2007.07.001 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | be27f83c-4772-4c3c-a6e4-b565a97e4bac | |
relation.isAuthorOfPublication.latestForDiscovery | be27f83c-4772-4c3c-a6e4-b565a97e4bac |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2023_which_one_is_best_published_version_IJSME.pdf
- Size:
- 954.61 KB
- Format:
- Adobe Portable Document Format