Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Remarks on accessible steady states for some coagulation-fragmentation systems

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorRodrigo, Marianito R.
dc.date.accessioned2023-06-20T09:38:35Z
dc.date.available2023-06-20T09:38:35Z
dc.date.issued2007-03
dc.description.abstractIn this paper we consider some systems of ordinary differential equations which are related to coagulation-fragmentation processes. In particular, we obtain explicit solutions {c(k)(t)} of such systems which involve certain coefficients obtained by solving a suitable algebraic recurrence relation. The coefficients are derived in two relevant cases: the high-functionality limit and the Flory-Stockmayer model. The solutions thus obtained are polydisperse (that is, c(k)(0) is different from zero for all k >= 1) and may exhibit monotonically increasing or decreasing total mass. We also solve a monodisperse case (where c(1)(0) is different from zero but c(k)(0)is equal to zero for all k >= 2) in the high-functionality limit. In contrast to the previous result, the corresponding solution is now shown to display a sol-gel transition when the total initial mass is larger than one, but not when such mass is less than or equal to one.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Contrac
dc.description.sponsorshipAsociación Mexicana de Cultura
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16325
dc.identifier.doi10.3934/dcds.2007.17.541
dc.identifier.issn1078-0947
dc.identifier.officialurlhttp://www.aimsciences.org/journals/pdfs.jsp?paperID=2123&mode=full
dc.identifier.relatedurlhttp://www.aimsciences.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50097
dc.issue.number3
dc.journal.titleDiscrete and Continuous Dynamical Systems. Series A.
dc.language.isoeng
dc.page.final552
dc.page.initial541
dc.publisherAmerican Institute of Mathematical Sciences
dc.relation.projectIDMRTN-CT-2004-503661
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu616.15
dc.subject.cdu612.115
dc.subject.keywordCoagulation-fragmentation
dc.subject.keywordexact solutions
dc.subject.keywordgelation
dc.subject.keywordsol-gel transition
dc.subject.keywordmolecular-size distribution
dc.subject.keyworddiffusion
dc.subject.keywordequations
dc.subject.keywordkinetics
dc.subject.keywordpolymerization
dc.subject.keywordaggregation
dc.subject.keywordequilibrium
dc.subject.keywordexistence
dc.subject.keywordpolymers
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmHematología
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco3205.04 Hematología
dc.titleRemarks on accessible steady states for some coagulation-fragmentation systems
dc.typejournal article
dc.volume.number17
dcterms.referencesD. J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli, 5 (1999), 3–48. H. Amann, Coagulation-fragmentation processes, Arch. Rat. Mech. Anal., 151 (2000), 339–366. Ph. Benilan and D. Wrzosek, On an infinite system of reaction-diffusion equations, Adv. Math. Sci. Appl., 7 (1997), 351–366. K. Binder, Theory for the dynamics of clusters, II. Critical diffusion in binary systems for phase separation, Phys. Rev. B, 15 (1977), 4425–4447. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15 (1943), 1–91. R. J. Cohen and G. B. Benedek, Equilibrium and kinetic theory of polymerization and the sol-gel transition, J. Phys. Chem., 86 (1982), 3696–3714. F. P. da Costa, A finite-dimensional dynamical model for gelation in coagulation processes, J. Nonlinear Sci., 8 (1998), 619–653. P. van Dongen and M. H. Ernst, Kinetics of reversible polymerization, J. Stat. Phys., 37 (1984), 301–329. M. Escobedo, Ph. Lauren¸cot, S.Mischler, and B. Perthame, Gelation and mass conservation in coagulation-fragmentation models, J. Diff. Eq., 195 (2003), 143–174. S. K. Friedlander, “Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics,” Oxford University Press, 2000. P. J. Flory, Molecular size distribution in three dimensional polymers I. Gelation, J. Am. Chem. Soc., 63 (1941), 3038–3090. P. J. Flory, Molecular size distribution in three dimensional polymers II. Trifunctional branching units, J. Am. Chem. Soc., 63 (1941), 3091–3096. P. J. Flory, Molecular size distribution in three dimensional polymers III. Trifunctional branching units, J. Am. Chem. Soc., 63 (1941), 3096–3100. A. Fasano and F. Rosso, Dynamics of dispersions with multiple breakage and volume scattering, in “Computational Methods and Multiphase Flow”, (eds. H. Power and C. Brebbia), Advances in Fluid Mechanics, WIT Press (2001). G. Grimmett and D. Stirzaker, “Probability and Random Processes,” Oxford University Press, 2000. M. A. Herrero, J. J. L. Velázquez, and D.Wrzosek, Sol-gel transition in a coagulation-diffusion model, Physica D, 141 (2000), 221–247. Ph. Laurençot and S. Mischler, The continuous coagulation-fragmentation equations with diffusion, Arch. Rat. Mech. Anal., 162 (2002), 45–99. F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equation of coagulation, J. Phys. A, 16 (1983), 2861–2873. F. Leyvraz and H. R. Tschudi, Singularities in the kinetics of coagulation processes, J. Phys. A., 14 (1981), 3389–3405. J. B. Mc Leod, On an infinite set of non-linear differential equations, Quart. J. Math. Oxford, 2 (1962), 119–128. H. G. Rotstein, A. Novick-Cohen, and R. Tannenbaum, Gelation and cluster growth with cluster-wall interactions, J. Stat. Phys., 90 (1998), 1–24. P. Sandkühler, J. Sefcik, and M. Morbidelli, Kinetics of gel formation in dilute dispersions with strong attractive particle interactions, Adv. in Colloid and Interface Science, 108-109 (2004), 133–143. M. Slemrod, Coagulation-difussion systems: derivation and existence of solutions for the diffuse interface structure equations, Physica D, 46 (1990), 351–366. M. von Smoluchowski, Drei Vorträge über Diffusion, Brownische Bewegung und Koagulation von Kolloidteilchen, Physik Z, 17 (1916), 557–585. J. L. Spouge, Equilibrium polymer size distributions, Macromolecules, 16 (1983), 121–127. W. H. Stockmayer, Theory of molecular size distribution and gel formation in branched-chain polymers, J. Chem. Phys., 11 (1943), 45–55. P. Whittle, Statistical processes of aggregation and polymerization, Proc. Cambridge Phil. Soc., 61 (1965), 475–495.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero13.pdf
Size:
192.06 KB
Format:
Adobe Portable Document Format

Collections