Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing

dc.contributor.authorCarro Calvo, L.
dc.contributor.authorSalcedo Sanz, S.
dc.contributor.authorKirchner Bossi, N.
dc.contributor.authorPortilla Figueras, A.
dc.contributor.authorPrieto, L.
dc.contributor.authorGarcía Herrera, Ricardo Francisco
dc.contributor.authorHernández Martín, E.
dc.date.accessioned2023-06-20T00:49:45Z
dc.date.available2023-06-20T00:49:45Z
dc.date.issued2011-03
dc.description© 2011 Elsevier Ltd. All rights reserved. This work has been partially supported by Spanish Ministry of Industry, Tourism and Trading, under an Avanza 2 project, number TSI-020100-2010-663.
dc.description.abstractIn this paper we present an evolutionary approach for the problem of discovering pressure patterns under a quality measure related to wind speed and direction. This clustering problem is specially interesting for companies involving in the management of wind farms, since it can be useful for analysis of results of the wind farm in a given period and also for long-term wind speed prediction. The proposed evolutionary algorithm is based on a specific encoding of the problem, which uses a dimensional reduction of the problem. With this special encoding, the required centroids are evolved together with some other parameters of the algorithm. We define a specific crossover operator and two different mutations in order to improve the evolutionary search of the proposed approach. In the experimental part of the paper, we test the performance of our approach in a real problem of pressure pattern extraction in the Iberian Peninsula, using a wind speed and direction series in a wind farm in the center of Spain. We compare the performance of the proposed evolutionary algorithm with that of an existing weather types (WT) purely meteorological approach, and we show that the proposed evolutionary approach is able to obtain better results than the WT approach.
dc.description.departmentDepto. de Física de la Tierra y Astrofísica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Industria, Comercio y Turismo
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/61757
dc.identifier.doi10.1016/j.energy.2011.01.001
dc.identifier.issn0360-5442
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.energy.2011.01.001
dc.identifier.relatedurlhttps://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43024
dc.issue.number3
dc.journal.titleEnergy
dc.language.isoeng
dc.page.final1581
dc.page.initial1571
dc.publisherPergamon-Elsevier Ltd
dc.relation.projectIDTSI-020100-2010-663
dc.rights.accessRightsrestricted access
dc.subject.cdu52
dc.subject.keywordMeans clustering-algorithm
dc.subject.keywordNeural-networks
dc.subject.keywordExpression data
dc.subject.keywordOptimization
dc.subject.keywordMOdels
dc.subject.keywordComputation
dc.subject.keywordPrediction
dc.subject.keywordTracking
dc.subject.keywordSYstems
dc.subject.keywordEnergy
dc.subject.ucmFísica atmosférica
dc.subject.unesco2501 Ciencias de la Atmósfera
dc.titleExtraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing
dc.typejournal article
dc.volume.number36
dspace.entity.typePublication
relation.isAuthorOfPublication194b877d-c391-483e-9b29-31a99dff0a29
relation.isAuthorOfPublication.latestForDiscovery194b877d-c391-483e-9b29-31a99dff0a29

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
garciaherrera12.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format

Collections