Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis of variance with general errors and grouped and non-grouped data: Some iterative algorithms

dc.contributor.authorAnido, Carmen
dc.contributor.authorRivero Rodríguez, Carlos
dc.contributor.authorValdés Sánchez, Teófilo
dc.date.accessioned2023-06-20T10:33:18Z
dc.date.available2023-06-20T10:33:18Z
dc.date.issued2008
dc.description.abstractIn this paper we consider some iterative estimation algorithms, which are valid to analyse the variance of data, which may be either non-grouped or grouped with different classification intervals. This situation appears, for instance, when data is collected from different sources and the grouping intervals differ from one source to another. The analysis of variance is carried out by means of general linear models, whose error terms may be general. An initial procedure in the line of the EM, although it does not necessarily agree with it, opens the paper and gives rise to a simplified version where we avoid the double iteration, which implicitly appears in the EM and, also, in the initial procedure mentioned above. The asymptotic stochastic properties of the resulting estimates have been investigated in depth and used to test ANOVA hypothesis
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20194
dc.identifier.doi10.1016/j.jmva.2008.01.003
dc.identifier.issn0047-259X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0047259X08000146
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50486
dc.issue.number8
dc.journal.titleJournal of multivariate analysis
dc.language.isoeng
dc.page.final1573
dc.page.initial1544
dc.publisherAcademic Press
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keyworditerative estimation
dc.subject.keywordstochastic approximation
dc.subject.keywordANOVA with grouped or censored data
dc.subject.keywordconditional imputation techniques
dc.subject.keywordconsistency
dc.subject.keywordasymptotic distributions
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleAnalysis of variance with general errors and grouped and non-grouped data: Some iterative algorithms
dc.typejournal article
dc.volume.number99
dcterms.referencesM.Y. An, Logconcavity versus logconvexity: A complete characterization, J. Econom. Theory 80 (1998) 350–369. A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Soc. 39 B (1977) 1–22. M.J.R. Healy, M. Westmacott, Missing values in experiments analysed on automatic computers, Appl. Statist. 5 (1956) 203–206. C.R. Hicks, Fundamental Concepts in the Design of Experiments, Rinehart and Winston, Holt, 1973. R.G. Laha, V.K. Rohatgi, Probability Theory, Wiley, 1979. R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data, Wiley, 1987. G.J. McLachlan, T. Krishnan, The EM Algorithm and Extensions, Wiley, 1997. T. Orchard, M.A. Woodbury, A missing information principle: Theory and applications, Proc. Math. Statist. Probab. (1972) 697–715. Univ. California Press, Berkeley. M.A. Tanner, Tools for Statistical Inference. Methods for the Exploration of Posterior Distributions and Likelihood Functions, Springer, 1993.
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo05elsevier.pdf
Size:
675.98 KB
Format:
Adobe Portable Document Format

Collections