Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.

Hyperspectral Image Compression Using Vector Quantization, PCA and JPEG2000

dc.contributor.authorBascones García, Daniel
dc.contributor.authorGonzález Calvo, Carlos
dc.contributor.authorMozos Muñoz, Daniel
dc.date.accessioned2023-06-17T12:38:33Z
dc.date.available2023-06-17T12:38:33Z
dc.date.issued2018-06-08
dc.description.abstractCompression of hyperspectral imagery increases the efficiency of image storage and transmission. It is especially useful to alleviate congestion in the downlinks of planes and satellites, where these images are usually taken from. A novel compression algorithm is presented here. It first spectrally decorrelates the image using Vector Quantization and Principal Component Analysis (PCA), and then applies JPEG2000 to the Principal Components (PCs) exploiting spatial correlations for compression. We take advantage of the fact that dimensionality reduction preserves more information in the first components, allocating more depth to the first PCs. We optimize the selection of parameters by maximizing the distortion-ratio performance across the test images. An increase of 1 to 3 dB in Signal Noise Ratio (SNR) for the same compression ratio is found over just using PCA + JPEG2000, while also speeding up compression and decompression by more than 10%. A formula is proposed which determines the configuration of the algorithm, obtaining results that range from heavily compressed-low SNR images to low compressed-near lossless ones.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67652
dc.identifier.doi10.3390/rs10060907
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs10060907
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/10/6/907
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12685
dc.issue.number6
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial907
dc.publisherMDPI
dc.relation.projectIDTIN2013-40968-P and TIN2017-87237-P
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordhyperspectral image compression
dc.subject.keyworddimensionality reduction
dc.subject.keywordPCA
dc.subject.keywordvector quantization
dc.subject.keywordJPEG2000
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleHyperspectral Image Compression Using Vector Quantization, PCA and JPEG2000
dc.typejournal article
dc.volume.number10
dspace.entity.typePublication
relation.isAuthorOfPublication7091b4d5-39d3-464a-be38-0863f757e2c9
relation.isAuthorOfPublication7888cab2-e944-4a9d-aa87-90e483db5a05
relation.isAuthorOfPublication4c67f647-780c-4c6a-84dd-5962fb0a6260
relation.isAuthorOfPublication.latestForDiscovery7888cab2-e944-4a9d-aa87-90e483db5a05

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-10-00907 (1).pdf
Size:
1.62 MB
Format:
Adobe Portable Document Format

Collections