Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Near band gap photoreflectance studies in CdTe, CdTe:V and CdTe:Ge crystals

dc.contributor.authorPal, U
dc.contributor.authorPere, J. L.
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorDiéguez, E.
dc.date.accessioned2023-06-20T19:05:03Z
dc.date.available2023-06-20T19:05:03Z
dc.date.issued1996-12-15
dc.description© 196-Elsevier Science S.A. All rights reserved. International Workshop on Beam Injection Assessment of Defects in Semiconductors (4. 1996. El Escorial, España). U. Pal thanks CONACyT for the financial support and the Catedra patrimonial (No. 481100-l-940460). This work is partially supported by the CONACyT grants (Project No. 1561-E9207).
dc.description.abstractThe contactless modulation spectroscopy technique of photoreflectance (PR) has been used to study the near band edge transitions in CdTe, CdTe:V and CdTe:Ge bulk crystals in the range of 14 and 400 K for the first time. The lineshape of the PR spectra for the crystals is seen to follow the third derivative functional form (TDFF) of electrorefiectance (ER) in the low field limit. Using the line shape analysis of the spectra at different temperatures, the variation of band gap (E_0), phase factor (β) and energy broadening parameter (I?) with temperature are studied. The temperature variation of band gap for these crystals is seen to follow the Varshni relation with coefficient values α = 4.357 x 10^(-4) eV K^(-l) , β= 183.4 K for undoped, α = 4.635 x 1O^(-4) eV K^(- I), β = 184.5 K for vanadium-doped and α = 4.508 x 10^(-4) eV K^(- 1) β = 230.5 K for Ge doped crystals. The Varshni relation is found to be valid for the whole range of temperature studied for undoped and Ge-doped crystals, where as for V-doped crystals, Varshni relation is valid upto about 250 K. Effects of vanadium and germanium doping on the energy broadening parameter in CdTe are discussed.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCONACyT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26787
dc.identifier.doi10.1016/S0921-5107(96)01725-4
dc.identifier.issn0921-5107
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0921-5107(96)01725-4
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59224
dc.issue.number1-mar
dc.journal.titleMaterials Science and Engineering B-Solid State Materials for Advanced Technology
dc.language.isoeng
dc.page.final301
dc.page.initial297
dc.publisherElsevier Science Sa
dc.relation.projectID1561-E9207
dc.relation.projectIDCatedra patrimonial (No. 481100-l-940460)
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordElectroreflectance
dc.subject.keywordGaas
dc.subject.keywordDefects
dc.subject.keywordField
dc.subject.ucmFísica de materiales
dc.titleNear band gap photoreflectance studies in CdTe, CdTe:V and CdTe:Ge crystals
dc.typejournal article
dc.volume.number42
dcterms.references[1]. D.E. Aspnes, in TX Moss (ed.), Hancibook on Semicomhxtom, Vol. 2, North Holland, New York, 1980, p. 109. [2]. B.O. Seraphin, in R.K. Willardson and A.C. Beer (eds.), Semiconductors and Semimetals, Vol. 9, Academic, New York, 1972, p. 1. [3]. R.N. Bhattacharya, H. Shen, P. Parayanthal, F.H. Pollak, T. Coutts and H. Aharoni, Proc. Sot. Photo-Opt. Instrum. Eng., 794 (1987) 81; Phys. Rev., 337 (1988) 4044. [4]. H. Shen, S.H. Pan, P.H. Pollak, M. Dutta and T.R. Aucoin, Phys. Rev., B36 (1987) 9384. [5]. O.J. Glembocki, B.V. Shanabrook, N. Bottka, W.T. Beard and J. Coman, Appl. Phys. Lett., 45 (1985) 970. [6]. J.L. Shay, Phys. Rev., BZ (1970) 803. [7]. R.B. Bylsma, P.M. Bridenbaugh, D.H. Olson and A.M. Glass, Appl. Phys. Lett., 51 (1987) 889. [8]. E. Rzepka, Y. Marfaing, M. Cuniot and R. Triboulet, Muter. Sci. Eng., B16 (1993) 262. [9]. A. Partovi, J. Millerd, E.M. Garmire, M. Ziari, W.H. Steier, S.B. Trivedi and M.B. Klein, Appl. Phys. Lett., 57 (1990) 846. [10]. P. Moravec, M. Hage-Ali, L. Chibani and P. Siffert, Mnter. Sci. Eng., B16 (1993) 223. [11]. D. Aspnes, SU$ Sci., 37 (1973) 418. [12]. F.H. Pollak, in D.E. Aspnes, S. So and R.F. Potter (eds.) Optical Characterization for Semiconductor Technology, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1981; Proc. Sot. Photo. Opt. Inst. Eng., 276 (1981) 142. [13]. M. Sydor, J. Angelo, J.J. W&on, W.C. Mitchel and M.Y. Yen, Phys. Rev., B40 (1989) 8473. [14]. Y.P. Varshni, Physica (t&e&t), 34 (1967) 149. [15]. A. Muranevich, M. Roitberg and E. Finkman, J. Crysr. GTowth, 64 (1983) 285. [16]. D.T.F. Marple, Phys. Rev., 150 (1966) 728. [18]. B.O. Seraphin and N. Bottka, Phys. Rev., 145 (1966) 828. [19]. D.F. Blossey, Phys. Rev., B3 (1971) 1382. [20]. W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel, G. Muller-Vogt, M. Slak, E. Rupp and K.W. Benz, Phys. Rev., B51 (1995) 10619. [21]. U. Pal, J. Piqueras, P. Fernandez, M.D. Serrano and E. Dieguez, J. Appl. Phys. 76 (1994) 3720. [22] W.S. Enloe, J.C. Parker, J. Vespoli, T.H. Myers, R.L. Harper and J.F. Schetzina, J. Appi. Phys., 61 (1987) 2005. [23] Jaesun Lee and N.C. Giles, J. Appl. Phys., 78 (1995) 1191.
dspace.entity.typePublication
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscovery68dabfe9-5aec-4207-bf8a-0851f2e37e2c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PiquerasJ220.pdf
Size:
516.73 KB
Format:
Adobe Portable Document Format

Collections