Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

GFC-Robust Risk Management Strategies under the Basel Accord

dc.contributor.authorMcAleer, Michael
dc.contributor.authorJiménez Martín, Juan Ángel
dc.contributor.authorPérez Amaral, Teodosio
dc.date.accessioned2023-06-20T09:12:16Z
dc.date.available2023-06-20T09:12:16Z
dc.date.issued2010
dc.descriptionJEL Classifications: G32, G11, G17, C53, C22
dc.description.abstractA risk management strategy is proposed as being robust to the Global Financial Crisis (GFC) by selecting a Value-at-Risk (VaR) forecast that combines the forecasts of different VaR models. The robust forecast is based on the median of the point VaR forecasts of a set of conditional volatility models. This risk management strategy is GFC-robust in the sense that maintaining the same risk management strategies before, during and after a financial crisis would lead to comparatively low daily capital charges and violation penalties. The new method is illustrated by using the S&P500 index before, during and after the 2008-09 global financial crisis. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria. The median VaR risk management strategy is GFC-robust as it provides stable results across different periods relative to other VaR forecasting models. The new strategy based on combined forecasts of single models is straightforward to incorporate into existing computer software packages that are used by banks and other financial institutions.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/11322
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/48938
dc.issue.number01
dc.language.isospa
dc.publication.placeMadrid
dc.publisherFacultad de CC Económicas y Empresariales. Instituto Complutense de Análisis Económico
dc.relation.ispartofseriesDocumentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.relation.projectIDAustralian Research Council
dc.relation.projectIDNational Science Council, Taiwan
dc.relation.projectIDJapan Society for the Promotion of Science
dc.relation.projectIDMinisterio de Ciencia y Tecnología
dc.relation.projectIDComunidad de Madrid
dc.rights.accessRightsopen access
dc.subject.keywordValue-at-Risk (VaR)
dc.subject.keywordDaily capital charges
dc.subject.keywordRobust forecasts
dc.subject.keywordViolation penalties
dc.subject.keywordOptimizing strategy
dc.subject.keywordAggressive risk management strategy
dc.subject.keywordConservative risk management strategy
dc.subject.keywordBasel II Accord
dc.subject.keywordGlobal financial crisis.
dc.subject.ucmFinanzas
dc.subject.ucmCrisis económicas
dc.subject.unesco5307.06 Fluctuaciones Económicas
dc.titleGFC-Robust Risk Management Strategies under the Basel Accord
dc.typetechnical report
dc.volume.number2010
dcterms.referencesBasel Committee on Banking Supervision, (1988), International Convergence of Capital Measurement and Capital Standards, BIS, Basel, Switzerland. Basel Committee on Banking Supervision, (1995), An Internal Model-Based Approach to Market Risk Capital Requirements, BIS, Basel, Switzerland. Basel Committee on Banking Supervision, (1996), Supervisory Framework for the Use of “Backtesting” in Conjunction with the Internal Model-Based Approach to Market Risk Capital Requirements, BIS, Basel, Switzerland. Basel Committee on Banking Supervision, (2006), International Convergence of Capital Measurement and Capital Standards, a Revised Framework Comprehensive Version, BIS, Basel, Switzerland. Berkowitz, J. and J. O'Brien (2001), How accurate are value-at-risk models at commercial banks?, Discussion Paper, Federal Reserve Board. Black, F. (1976), Studies of stock market volatility changes, in 1976 Proceedings of the American Statistical Association, Business and Economic Statistics Section, pp. 177-181. Bollerslev, T. (1986), Generalised autoregressive conditional heteroscedasticity, Journal of Econometrics, 31, 307-327. Borio, C. (2008), The financial turmoil of 2007-?: A preliminary assessment and some policy considerations, BIS Working Papers No 251, Bank for International Settlements, Basel, Switzerland. Caporin, M. and M. McAleer (2010a), The Ten Commandments for managing investments, Journal of Economic Surveys, 24, 196-200. Caporin, M. and M. McAleer (2010b), Model selection and testing of conditional and stochastic volatility models, to appear in L. Bauwens, C. Hafner and S. Laurent (eds.), Handbook on Financial Engineering and Econometrics: Volatility Models and Their Applications, Wiley, New York (Available at SSRN: http://ssrn.com/abstract=1676826). Engle, R.F. (1982), Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007. Franses, P.H. and D. van Dijk (1999), Nonlinear Time Series Models in Empirical Finance, Cambridge, Cambridge University Press. Giacomini, R., and Komunjer, I. (2005), Evaluation and combination of conditional quantile forecasts. Journal of Business & Economic Statistics, 23, 416-431. Gizycki, M. and N. Hereford (1998), Assessing the dispersion in banks’ estimates of market risk: the results of a value-at-risk survey, Discussion Paper 1, Australian Prudential Regulation Authority. Glosten, L., R. Jagannathan and D. Runkle (1992), On the relation between the expected value and volatility of nominal excess return on stocks, Journal of Finance, 46, 1779-1801. Jimenez-Martin, J.-A., McAleer, M. and T. Pérez-Amaral (2009), The Ten Commandments for managing value-at-risk under the Basel II Accord, Journal of Economic Surveys, 23, 850-855. Jorion, P. (2000), Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill, New York. Li, W.K., S. Ling and M. McAleer (2002), Recent theoretical results for time series models with GARCH errors, Journal of Economic Surveys, 16, 245-269. Reprinted in M. McAleer and L. Oxley (eds.), Contributions to Financial Econometrics: Theoretical and Practical Issues, Blackwell, Oxford, 2002, pp. 9-33. Ling, S. and M. McAleer (2002a), Stationarity and the existence of moments of a family of GARCH processes, Journal of Econometrics, 106, 109-117. Ling, S. and M. McAleer (2002b), Necessary and sufficient moment conditions for the GARCH(r,s) and asymmetric power GARCH(r, s) models, Econometric Theory, 18, 722-729. Ling, S. and M. McAleer, (2003a), Asymptotic theory for a vector ARMA-GARCH model, Econometric Theory, 19, 278-308. Ling, S. and M. McAleer (2003b), On adaptive estimation in nonstationary ARMA models with GARCH errors, Annals of Statistics, 31, 642-674. Lopez, J. A., (1999), "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17. McAleer, M. (2005), Automated inference and learning in modeling financial volatility, Econometric Theory, 21, 232-261. McAleer, M. (2009), The Ten Commandments for optimizing value-at-risk and daily capital charges, Journal of Economic Surveys, 23, 831-849. McAleer, M., F. Chan and D. Marinova (2007), An econometric analysis of asymmetric volatility: theory and application to patents, Journal of Econometrics, 139, 259-284. McAleer, M., J.-Á. Jiménez-Martin and T. Pérez-Amaral (2009), A decision rule to minimize daily capital charges in forecasting value-at-risk, to appear in Journal of Forecasting (Available at SSRN: http://ssrn.com/abstract=1349844). McAleer, Michael, J-A., Jiménez-Martin and T. Perez Amaral (2010), Has the Basel II Accord Encouraged Risk Management During the 2008-09 Financial Crisis? (Available at SSRN: http://ssrn.com/abstract=1397239). McAleer, M. and B. da Veiga (2008a), Forecasting value-at-risk with a parsimonious portfolio spillover GARCH (PS-GARCH) model, Journal of Forecasting, 27, 1-19. McAleer, M. and B. da Veiga (2008b), Single index and portfolio models for forecasting value-at-risk thresholds, Journal of Forecasting, 27, 217-235. Nelson, D.B. (1991), Conditional heteroscedasticity in asset returns: a new approach, Econometrica, 59, 347-370. Pérignon, C., Z.Y. Deng and Z.J. Wang (2008), Do banks overstate their value-at-risk?, Journal of Banking & Finance, 32, 783-794. Riskmetrics (1996), J.P. Morgan Technical Document, 4th Edition, New York, J.P. Morgan. Shephard, N. (1996), Statistical aspects of ARCH and stochastic volatility, in O.E. Barndorff-Nielsen, D.R. Cox and D.V. Hinkley (eds.), Statistical Models in Econometrics, Finance and Other Fields, Chapman & Hall, London, 1-67. Stahl, G. (1997), Three cheers, Risk, 10, pp. 67-69. Zumbauch, G. (2007), A Gentle Introduction to the RM 2006 Methodology, New York, Riskmetrics Group.
dspace.entity.typePublication
relation.isAuthorOfPublication05235eb8-c478-4f0b-ada4-68ba02d31095
relation.isAuthorOfPublication14ac85fa-418f-40ee-b712-4075cd494574
relation.isAuthorOfPublication.latestForDiscovery05235eb8-c478-4f0b-ada4-68ba02d31095

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1001.pdf
Size:
424.32 KB
Format:
Adobe Portable Document Format