Chow forms of congruences
dc.contributor.author | Giraldo Suárez, Luis | |
dc.contributor.author | Sols Lucía, Ignacio | |
dc.date.accessioned | 2023-06-20T17:00:52Z | |
dc.date.available | 2023-06-20T17:00:52Z | |
dc.date.issued | 1997 | |
dc.description.abstract | For X PN an n-dimensional variety the set of linear spaces of dimension N − n − 1 meeting X defines a hypersurface, H, in the Grassmann variety G(N − n,N + 1). The homogeneous form in the Pl¨ucker coordinates defining H or H itself is called the Chow form of X. This notion was defined by Cayley [A. Cayley, “On a new analytical representation of curves in space”, Q. J. Pure Appl. Math. 3, 225-236 (1860), and 5, 81-86 (1862); for a modern treatment see M. Green and I. Morrison, Duke Math. J. 53, 733-747 (1986; Zbl 0621.14028)]. In the present paper the authors study Chow forms of integral surfaces in G(2, 4) following the approach of M. Green and I. Morrison. Let V be a fixed 4-dimensional space and F P3 סP3, the flag variety parametrizing all chains V1 V3, where Vi is a subspace of V with dim Vi = i. F parametrizes the lines of G and to each integral surface Y in G there corresponds, in a natural way, an integral hypersurface X in F. The main result in this paper is a characterization of integral hypersurfaces X in F that are Chow forms of integral surfaces in G, in terms of some differential equations. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16806 | |
dc.identifier.citation | Giraldo, Luis, y Ignacio Sols. «Chow Forms of Congruences». Mathematical Proceedings of the Cambridge Philosophical Society, vol. 121, n.o 1, enero de 1997, pp. 31-37. DOI.org (Crossref), https://doi.org/10.1017/S0305004196001302. | |
dc.identifier.doi | 10.1017/S0305004196001302 | |
dc.identifier.issn | 0305-0041 | |
dc.identifier.officialurl | https://doi.org/10.1017/S0305004196001302 | |
dc.identifier.relatedurl | http://www.journals.cambridge.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57625 | |
dc.journal.title | Mathematical Proceedings of the Cambridge Philosophical Society | |
dc.page.final | 37 | |
dc.page.initial | 31 | |
dc.publisher | Cambridge University Press | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Grassmannian | |
dc.subject.keyword | Chow form | |
dc.subject.keyword | Integral surfaces | |
dc.subject.keyword | Flag variety | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Chow forms of congruences | |
dc.type | journal article | |
dc.volume.number | 121 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7ee87225-8f33-4c93-9ead-94ce7ee69773 | |
relation.isAuthorOfPublication | 6d35def4-3d5f-4978-800f-82b7edf76b5d | |
relation.isAuthorOfPublication.latestForDiscovery | 7ee87225-8f33-4c93-9ead-94ce7ee69773 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Chow_forms_of_congruences.pdf
- Size:
- 334.29 KB
- Format:
- Adobe Portable Document Format