Prediction-for-CompAction: navigation in social environments using generalized cognitive maps

dc.contributor.authorVillacorta Atienza, José Antonio
dc.contributor.authorGonzález Calvo, Carlos
dc.contributor.authorMakarov Slizneva, Valeriy
dc.date.accessioned2024-07-11T11:46:49Z
dc.date.available2024-07-11T11:46:49Z
dc.date.issued2015-02-13
dc.description.abstractThe ultimate navigation efficiency of mobile robots in human environments will depend on how we will appraise them: merely as impersonal machines or as human-like agents. In the latter case, an agent may take advantage of the cooperative collision avoidance, given that it possesses recursive cognition, i.e., the agent’s decisions depend on the decisions made by humans that in turn depend on the agent’s decisions. To deal with this high-level cognitive skill, we propose a neural network architecture implementing Prediction-for-CompAction paradigm. The network predicts possible human–agent collisions and compacts the time dimension by projecting a given dynamic situation into a static map. Thereby emerging compact cognitive map can be readily used as a “dynamic GPS” for planning actions or mental evaluation of the convenience of cooperation in a given context. We provide numerical evidence that cooperation yields additional room for more efficient navigation in cluttered pedestrian flows, and the agent can choose path to the target significantly shorter than a robot treated by humans as a functional machine. Moreover, the navigation safety, i.e., the chances to avoid accidental collisions, increases under cooperation. Remarkably, these benefits yield no additional load to the mean society effort. Thus, the proposed strategy is socially compliant, and the humanoid agent can behave as “one of us.”
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationVillacorta-Atienza, J.A., Calvo, C. & Makarov, V.A. Prediction-for-CompAction: navigation in social environments using generalized cognitive maps. Biol Cybern. 2015; 109: 307–320. https://doi.org/10.1007/s00422-015-0644-8
dc.identifier.doi10.1007/s00422-015-0644-8
dc.identifier.issn0340-1200
dc.identifier.issn1432-0770
dc.identifier.urihttps://hdl.handle.net/20.500.14352/105969
dc.journal.titleBiological Cybernetics
dc.language.isoeng
dc.page.final320
dc.page.initial307
dc.publisherSpringer Link
dc.rights.accessRightsopen access
dc.subject.keywordNavigation in dynamic situations
dc.subject.keywordCognition
dc.subject.keywordCompact cognitive maps
dc.subject.keywordDynamic GPS
dc.subject.keywordDecision making
dc.subject.keywordNonlinear dynamics
dc.subject.ucmTeoría de la decisión
dc.subject.ucmPsicología cognitiva
dc.subject.ucmAprendizaje
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco6114.08 Procesos y Teoría de la decisión
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titlePrediction-for-CompAction: navigation in social environments using generalized cognitive maps
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number109
dspace.entity.typePublication
relation.isAuthorOfPublication21b23d2b-75f8-4803-9370-4e88539b81cc
relation.isAuthorOfPublication7888cab2-e944-4a9d-aa87-90e483db5a05
relation.isAuthorOfPublicationa5728eb3-1e14-4d59-9d6f-d7aa78f88594
relation.isAuthorOfPublication.latestForDiscovery21b23d2b-75f8-4803-9370-4e88539b81cc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
villacorta_calvo_makarov_prediction.pdf
Size:
3.15 MB
Format:
Adobe Portable Document Format

Collections