On the Wallman-Frink compactification of 0-dimensional spaces and shape
dc.contributor.author | Alonso Morón, Manuel | |
dc.date.accessioned | 2023-06-20T16:54:04Z | |
dc.date.available | 2023-06-20T16:54:04Z | |
dc.date.issued | 1992 | |
dc.description.abstract | Here SF denotes the category whose objects are the pairs (X,P)where P is a metrizable ANR-space and X is a closed subset of P, and the morphisms between two objects (X,P) and (Y,Q) are the homotopy classes of mutations f:U(X,P)→V(Y,Q) (where U(X,P) and V(Y,Q) are the complete open neighborhood systems of X in P and Y in Q respectively). So two objects of SF are isomorphic if and only if they have the same shape in the sense of Fox (or Marde sic). The author constructs a covariant functor T from SF to the category C0 of all compact 0-dimensional spaces and continuous maps. This functor allows him to obtain new shape invariants in the class of metrizable spaces. Using this functor T he also constructs new contravariant functors to the the category of metrizable spaces and continuous maps and to the category of groups and homomorphisms. In order to construct T he uses the space of quasicomponents QX of a metrizable space X . Actually he uses the 0-dimensional compactification β0(QX) of QX. The space β0(QX) can be viewed as the 0-dimensional analogue of the Stone-Cech compactification. As a theorem he proves that two 0-dimensional metrizable spaces are of the same shape if and only if they are homeomorphic. This is a generalization in the metric case of a similar result for paracompacta due to G. Kozlowski and the reviewer [Fund. Math. 83 (1974), no. 2, 151-154] because there are metrizable spaces X such that ind(X)=0 but the covering dimension dim(X)>0 . | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15663 | |
dc.identifier.citation | Moron, Manuel Alonso. «On the Wallman-Frink Compactification of 0-Dimensional Spaces and Shape». Archiv Der Mathematik, vol. 58, n.o 3, marzo de 1992, pp. 294-300. DOI.org (Crossref), https://doi.org/10.1007/BF01292931. | |
dc.identifier.doi | 10.1007/BF01292931 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.officialurl | https://doi.org/10.1007/BF01292931 | |
dc.identifier.relatedurl | http://www.springerlink.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57375 | |
dc.issue.number | 3 | |
dc.journal.title | Archiv der Mathematik | |
dc.page.final | 300 | |
dc.page.initial | 294 | |
dc.publisher | Birkhäuser Verlag | |
dc.rights.accessRights | metadata only access | |
dc.subject.cdu | 515.143 | |
dc.subject.cdu | 515.122.536 | |
dc.subject.cdu | 515.124 | |
dc.subject.keyword | Mutation | |
dc.subject.keyword | space of quasicomponents | |
dc.subject.keyword | Wallman-Frink compactification of a 0-dimensional space | |
dc.subject.keyword | shape invariants | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | On the Wallman-Frink compactification of 0-dimensional spaces and shape | |
dc.type | journal article | |
dc.volume.number | 58 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 95bd8189-3086-4e0f-94f6-06dee8c8f675 | |
relation.isAuthorOfPublication.latestForDiscovery | 95bd8189-3086-4e0f-94f6-06dee8c8f675 |