Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the Wallman-Frink compactification of 0-dimensional spaces and shape

dc.contributor.authorAlonso Morón, Manuel
dc.date.accessioned2023-06-20T16:54:04Z
dc.date.available2023-06-20T16:54:04Z
dc.date.issued1992
dc.description.abstractHere SF denotes the category whose objects are the pairs (X,P)where P is a metrizable ANR-space and X is a closed subset of P, and the morphisms between two objects (X,P) and (Y,Q) are the homotopy classes of mutations f:U(X,P)→V(Y,Q) (where U(X,P) and V(Y,Q) are the complete open neighborhood systems of X in P and Y in Q respectively). So two objects of SF are isomorphic if and only if they have the same shape in the sense of Fox (or Marde sic). The author constructs a covariant functor T from SF to the category C0 of all compact 0-dimensional spaces and continuous maps. This functor allows him to obtain new shape invariants in the class of metrizable spaces. Using this functor T he also constructs new contravariant functors to the the category of metrizable spaces and continuous maps and to the category of groups and homomorphisms. In order to construct T he uses the space of quasicomponents QX of a metrizable space X . Actually he uses the 0-dimensional compactification β0(QX) of QX. The space β0(QX) can be viewed as the 0-dimensional analogue of the Stone-Cech compactification. As a theorem he proves that two 0-dimensional metrizable spaces are of the same shape if and only if they are homeomorphic. This is a generalization in the metric case of a similar result for paracompacta due to G. Kozlowski and the reviewer [Fund. Math. 83 (1974), no. 2, 151-154] because there are metrizable spaces X such that ind(X)=0 but the covering dimension dim(X)>0 .
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15663
dc.identifier.citationMoron, Manuel Alonso. «On the Wallman-Frink Compactification of 0-Dimensional Spaces and Shape». Archiv Der Mathematik, vol. 58, n.o 3, marzo de 1992, pp. 294-300. DOI.org (Crossref), https://doi.org/10.1007/BF01292931.
dc.identifier.doi10.1007/BF01292931
dc.identifier.issn0003-889X
dc.identifier.officialurlhttps://doi.org/10.1007/BF01292931
dc.identifier.relatedurlhttp://www.springerlink.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57375
dc.issue.number3
dc.journal.titleArchiv der Mathematik
dc.page.final300
dc.page.initial294
dc.publisherBirkhäuser Verlag
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.143
dc.subject.cdu515.122.536
dc.subject.cdu515.124
dc.subject.keywordMutation
dc.subject.keywordspace of quasicomponents
dc.subject.keywordWallman-Frink compactification of a 0-dimensional space
dc.subject.keywordshape invariants
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn the Wallman-Frink compactification of 0-dimensional spaces and shape
dc.typejournal article
dc.volume.number58
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication.latestForDiscovery95bd8189-3086-4e0f-94f6-06dee8c8f675

Download

Collections