Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Consequences of universality among Toeplitz operators

dc.contributor.authorGallardo Gutiérrez, Eva Antonia
dc.contributor.authorCowen, Carl C.
dc.date.accessioned2023-06-18T06:46:47Z
dc.date.available2023-06-18T06:46:47Z
dc.date.issued2015-12
dc.description.abstractThe Invariant Subspace Problem for Hilbert spaces is a long-standing question and the use of universal operators in the sense of Rota has been one tool for studying the problem. The best known universal operators have been adjoints of analytic Toeplitz operators or unitarily equivalent to them. We present many examples of Toeplitz operators whose adjoints are universal operators and exhibit some of their common properties. Some ways in which the invariant subspaces of these universal operators interact with operators in their commutants are given. Special attention is given to the closed subalgebra, not always the zero algebra, of compact operators in their commutants. Finally, three questions connecting shift invariant subspaces and invariant subspaces of analytic Toeplitz operators are raised. Positive answers for both of the first two imply the existence of non-trivial invariant subspaces for every bounded operator on separable Hilbert spaces of dimension two or more.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipPlan Nacional I+D
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33158
dc.identifier.citation[1]P.R. Ahern, D.N. Clark, Functions orthogonal to invariant subspaces, Acta Math. 124 (1970) 191–204. [2] S.R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23 (1969) 526–527. [3] I. Chalendar, J.R. Partington, Modern Approaches to the Invariant Subspace Problem, Cambridge University Press,2011. [4] C.C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239 (1978) 1–31. [5] C.C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana Math. J. 29 (1980) 1–12. [6] C.C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Funct. Anal. 36 (1980) 169–184. [7] C.C. Cowen, E.A. Gallardo-Gutiérrez, Unitary equivalence of one-parameter groups of Toeplitz and composition operators,J. Funct. Anal. 261 (2011) 2641–2655. [8] C.C. Cowen, E.A. Gallardo-Gutiérrez, Rota’s universal operators and invariant subspaces in Hilbert spaces,submitted for publication. [9] C.C. Cowen, B.D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1995. [10] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. [11] R.G. Douglas, H.S. Shapiro, A.L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970) 37–76. [12] E.A. Gallardo-Gutiérrez, P. Gorkin, Minimal invariant subspaces for composition operators, J. Math. Pures Appl. 95 (2011) 245–259. [13] G. Gunatillake, Compact weighted composition operators on the Hardy space, Proc. Amer. Math. Soc. 136 (2008)2895–2899. [14] D.A. Herrero, On analytically invariant subspaces and spectra, Trans. Amer. Math. Soc. 233 (1977) 37–44. [15] D.A. Herrero, M.J. Sherman, Non-cyclic vectors for S∗, Proc. Amer. Math. Soc. 48 (1975) 193–196. [16] J.E. Littlewood, On inequalities in the theory of functions, Proc. Lond. Math. Soc. 23 (1925) 481–519. [17] V. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funktsional. Anal. i Prilozhen. 7 (1973) 55–56 (in Russian). [18] N.K. Nikolski, Operators, Functions, and Systems: An Easy Reading, vol. 1: Hardy, Hankel and Toeplitz, Math.Surveys Monogr., vol. 92, AMS, 2002. [19] E.A. Nordgren, P. Rosenthal, F.S. Wintrobe,Composition operators and the invariant subspace problem, C. R. Math.Rep. Acad. Sci. Can. 6 (1984) 279–282. [20] E.A. Nordgren, P. Rosenthal, F.S. Wintrobe, Invertible composition operators on Hp, J. Funct. Anal. 73 (1987) 324–344. [21] H. Radjavi, P. Rosenthal, Invariant Subspaces,pringer-Verlag, New York, 1973. [22] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13 (1960) 469–472.
dc.identifier.doi10.1016/j.jmaa.2015.06.061
dc.identifier.issn0022-247X
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022247X15006150
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24151
dc.issue.number1
dc.journal.titleJournal of Mathematical Analysis and Applications
dc.language.isoeng
dc.page.final503
dc.page.initial484
dc.publisherElsevier
dc.relation.projectIDMTM2013-42105-P
dc.rights.accessRightsrestricted access
dc.subject.cdu517
dc.subject.keywordInvariant subspace
dc.subject.keywordHardy space
dc.subject.keywordComposition operator
dc.subject.keywordToeplitz operator
dc.subject.keywordWeighted composition operator
dc.subject.keywordRota's universal operators
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleConsequences of universality among Toeplitz operators
dc.typejournal article
dc.volume.number432
dspace.entity.typePublication
relation.isAuthorOfPublicationf56f1f11-4b62-4a87-80df-8dc195da1201
relation.isAuthorOfPublication.latestForDiscoveryf56f1f11-4b62-4a87-80df-8dc195da1201

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gallardo202elsevier.pdf
Size:
511.39 KB
Format:
Adobe Portable Document Format

Collections