Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the product selection and plant dimensioning problem under uncertainty

dc.contributor.authorOrtuño Sánchez, María Teresa
dc.contributor.authorAlonso Ayuso, Antonio
dc.contributor.authorEscudero Bueno, Laureano Fernando
dc.contributor.authorGarín, A.
dc.contributor.authorPérez, G.
dc.date.accessioned2023-06-20T09:42:45Z
dc.date.available2023-06-20T09:42:45Z
dc.date.issued2005-08
dc.description.abstractWe present a two-stage full recourse model for strategic production planning under uncertainty, whose aim consists of determining product selection and plant dimensioning. The main uncertain parameters are the product price, demand and production cost. The benefit is given by the product net profit over the time horizon minus the investment depreciation and operation costs. The Value-at-Risk and the reaching probability are considered as risk measures in the objective function to be optimized as alternatives to the maximization of the expected benefit over the scenarios. The uncertainty is represented by a set of scenarios. The problem is formulated as a mixed 0-1 Deterministic Equivalent Model. The strategic decisions to be made in the first stage are represented by 0-1 variables. The tactical decisions to be made in the second stage are represented by continuous variables. An approach for problem solving based on a splitting variable mathematical representation via scenario is considered. The problem uses the Twin Node Family concept within the algorithmic framework known as Branch-and-Fix Coordination for satisfying the nonanticipativity constraints. Some computational experience is reported.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipUniversitat Politècnica de València
dc.description.sponsorshipDirección General de Coordinación y Estudios (España)
dc.description.sponsorshipMadrid Ciencia y Tecnología
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17416
dc.identifier.citationAlonso Ayuso, A, L Escudero, A Garin, M Ortuno, y G Perez. «On the Product Selection and Plant Dimensioning Problem under Uncertainty». Omega 33, n.o 4 (agosto de 2005): 307-18. https://doi.org/10.1016/j.omega.2004.05.001.
dc.identifier.doi10.1016/j.omega.2004.05.001
dc.identifier.issn0305-0483
dc.identifier.officialurlhttps//doi.org/10.1016/j.omega.2004.05.001
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S0305048304000866
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50230
dc.issue.number4
dc.journal.titleOMEGA - The International Journal of Management Science
dc.language.isoeng
dc.page.final318
dc.page.initial307
dc.publisherPergamon Elsevier Science
dc.relation.projectIDGrupo consolidado 9/UPV 00038.321-13631/2001
dc.relation.projectIDMEC2001-0636
dc.relation.projectIDBFM2002-00281
dc.relation.projectIDTIC2000-1750-C06-04(05)
dc.relation.projectIDTIC2003-05982-C05-05
dc.rights.accessRightsrestricted access
dc.subject.cdu004.42
dc.subject.cdu004.92
dc.subject.keywordProduction planning
dc.subject.keywordMean-risk
dc.subject.keywordStochastic programming
dc.subject.keywordMixed 0-1 programs
dc.subject.keywordSplitting variable
dc.subject.keywordBranch-and-fix coordination
dc.subject.keywordModels
dc.subject.keywordPrograms
dc.subject.ucmLenguajes de programación
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleOn the product selection and plant dimensioning problem under uncertaintyen
dc.typejournal article
dc.volume.number33
dcterms.referencesL.F. Escudero, P.V. Kamesam, A. King, R.J.-.B. Wets Production planning via scenario modelling Annals of Operations Research, 43 (1993), pp. 311–335 L.F. Escudero, E. Galindo, E. Gómez, G. García, V. Sabau SCHUMANN, a modelling framework for supply chain management under uncertainty European Journal of Operational Research, 119 (1999), pp. 13–34 S. Ahmed, A.J. King, G. Parija A multi-stage stochastic integer programming approach for capacity expansion under uncertainty Journal of Global Optimization, 26 (2003), pp. 3–24 A. Alonso-Ayoso, L.F. Escudero, A. Garín, M.T. Ortuño, G. Pérez An approach for strategic supply chain planning based on stochastic 0–1 programming Journal of Global Optimization, 26 (2003), pp. 97–124 S.A. MirHassani, C. Lucas, G. Mitra, C.A. Poojari Computational solution of a capacity planning model under uncertainty Parallel Computing Journal, 26 (2000), pp. 511–538 Alonso-Ayuso A, Escudero LF, Ortuño MT. On modeling production planning and scheduling under uncertainty. In: Wallace SW, Ziemba WT, editors. Applications of stochastic programming. MPS-SIAM-series in optimization. Philadelphia: SIAM; 2004, forthcoming. Uryasev S, Pardalos PM, editors, Stochastic optimization: algorithms and applications. Dordrecht: Kluwer Academic Publishers; 2001. Wallace SW, Ziemba WT, editors. Applications of stochastic programming. MPS-SIAM-series in optimization, Philadelphia: SIAM; 2004, forthcoming. Ziemba WT, Mulvey JM, editors. Worldwide asset and liability modeling. Cambridge: Cambridge University Press; 1998. W. Ogryczak, A. Ruszczynski From stochastic dominance to mean-risk models: semi-deviations as risk measures European Journal of Operational Research, 116 (1999), pp. 33–50 R. Schultz, S. Tiedemann Risk aversion via excess probabilities in stochastic programs with mixed-integer recourse SIAM Journal on Optimization, 14 (2004), pp. 115–138 Dert CK. A dynamic model for asset liability management for defined benefit pension funds, In: Ziemba WT, Mulvey JM, editors. Worldwide asset and liability modeling. Cambridge: Cambridge University Press; 1998. p. 501–36 Lulli G, Sen S. A branch-and-price algorithm for multi-stage stochastic integer programming with application to stochastic batch-sizing problems. Stochastic Programming E-Print Series, http://dochost.rz.hu-berlin.de/speps, 2002. R. Schultz Stochastic programming with integer variables Mathematical Programming Ser. B, 97 (2003), pp. 285–309 Valente P. Software tools for the investigation of stochastic programming problems. PhD thesis, Department of Mathematics and Computation, Brunel University, UK; 2002. A. Alonso-Ayuso, L.F. Escudero, M.T. Ortuño BFC, a Branch-and-Fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0–1 programs European Journal of Operational Research, 151 (2003), pp. 503–519 A. Charnes, W.W. Cooper Chance constrained programming Management Science, 5 (1959), pp. 73–79 C.C. Carøe, R. Schultz Dual decomposition in stochastic integer programming Operations Research Letters, 24 (1999), pp. 37–45 Hemmecke R, Schultz R. Decomposition methods for two-stage stochastic integer programs. In: Grötschel M, Krumke SO, Rambau J, editors. Online optimization of large scale systems. Berlin: Springer; 2001. p. 601–22. W.K. Klein Haneveld, M.H. van der Vlerk Stochastic integer programming: general models and algorithms Annals of Operations Research, 85 (1999), pp. 39–57 Klein Haneveld WK, van der Vlerk MH. Optimizing electricity distribution using integer recourse models. In: Uryasev S, Pardalos PM, editors. Stochastic optimization: algorithms and applications. Dordrecht: Kluwer Academic Publishers; 2001. p. 137–54. Novak MP, Schultz R, Westphalen M. Optimization of simultaneous power production and trading by stochastic integer programming. Stochastic Programming E-Print Series, http://dochost.rz.hu-berlin.de/speps, 2002. Römisch W, Schultz R. Multi-stage stochastic integer programs: an introduction. In: Grötschel M, Krumke SO, Rambau J, editors. Online optimization of large scale systems. Berlin: Springer; 2001. p. 581–600. J.R. Birge, F.V. Louveaux Introduction to stochastic programmingSpringer, Berlin (1997)
dspace.entity.typePublication
relation.isAuthorOfPublication6f9ad449-8cec-4e55-aca2-7dedcde6b101
relation.isAuthorOfPublication8f791af6-0fef-4e4a-92bf-85ea2e321e00
relation.isAuthorOfPublication1896c3b5-d17b-4208-9fc4-3ed788be31ae
relation.isAuthorOfPublication.latestForDiscovery6f9ad449-8cec-4e55-aca2-7dedcde6b101

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ortuno11.pdf
Size:
279.84 KB
Format:
Adobe Portable Document Format

Collections