Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deformation of canonical morphisms and the moduli of surfaces of general type

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer-Verlag
Citations
Google Scholar

Citation

Abstract

In this article we study the deformation of finite maps and show how to use this deformation theory to construct varieties with given invariants in a projective space. Among other things, we prove a criterion that determines when a finite map can be deformed to a one-to-one map. We use this criterion to construct new surfaces of general type with birational canonical map, for different c21 and _ (the canonical map of the surfaces we construct is in fact a finite, birational morphism). Our general results enable us to describe some new components of the moduli of surfaces of general type. We also find infinitely many moduli spaces M(x0,0,y) having one component whose general point corresponds to a canonically embedded surface and another component whose general point corresponds to a surface whose canonical map is a degree 2 morphism.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections