Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fast optical source for quantum key distribution based on semiconductor optical amplifiers

dc.contributor.authorJofre, Marc
dc.contributor.authorGardelein, Arnaud
dc.contributor.authorAnzolin, Gabriele
dc.contributor.authorAmaya, Waldimar
dc.contributor.authorCapmany Francoy, José
dc.contributor.authorUrsin, Rupert
dc.contributor.authorPeñate Quesada, Laura
dc.contributor.authorLópez Molina, Demetrio
dc.contributor.authorSan Juan, J. L.
dc.contributor.authorCarrasco, José Antonio
dc.contributor.authorGarcía de Quirós, Francisco
dc.contributor.authorTorcal Milla, Francisco José
dc.contributor.authorSánchez Brea, Luis Miguel
dc.contributor.authorBernabeu Martínez, Eusebio
dc.contributor.authorPerdigues Armengol, Josep Maria
dc.contributor.authorJennewein, Thomas
dc.contributor.authorPérez Torres, Juan
dc.contributor.authorMitchell, Morgan W.
dc.contributor.authorPruneri, Valerio
dc.date.accessioned2023-06-20T03:42:11Z
dc.date.available2023-06-20T03:42:11Z
dc.date.issued2011-02-28
dc.description© 2011 Optical Society of America. This work was carried out with the financial support of the Ministerio de Educación y Ciencia (Spain) through grants TEC2007-60185, FIS2007-60179, FIS2008-01051 and Consolider Ingenio CSD2006-00019, and also by the European Space Agency under the ARTES-5 telecom programme Contract No. 21460/08/NL/IA.
dc.description.abstractA novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14 × 10−2 while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO), España
dc.description.sponsorshipCONSOLIDER-INGENIO, España
dc.description.sponsorshipAgencia Espacial Europea (ESA)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26149
dc.identifier.doi10.1364/OE.19.003825
dc.identifier.issn1094-4087
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OE.19.003825
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44278
dc.issue.number5
dc.journal.titleOptics Express
dc.language.isoeng
dc.page.final3834
dc.page.initial3825
dc.publisherThe Optical Society Of America
dc.relation.projectIDTEC2007-60185
dc.relation.projectIDFIS2007-60179
dc.relation.projectIDFIS2008-01051
dc.relation.projectIDCSD2006-00019
dc.relation.projectIDARTES-5 21460/08/NL/IA
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordOptics
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleFast optical source for quantum key distribution based on semiconductor optical amplifiers
dc.typejournal article
dc.volume.number19
dcterms.references1. C. H. Bennett, and G. Brassard, “Quantum cryptography: Public-key distribution and coin tossing,” Proc. IEEE Int. Conference on Computers, Systems and Signal Processing 175–179 (1984). 2. V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, “Quantum cloning,” Rev. Mod. Phys. 77, 1225–1256 (2005). 3. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992). 4. W.-Y. Hwang, “Quantum key distribution with high loss: Toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). 5. H.-K. Lo, X. Ma, and K. Chen, “Decoy State Quantum Key Distribution,” Phys. Rev. Lett. 94, 230504 (2005). 6. S. Nauerth, M. F¨urst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, “Information leakage via side channels in freespace BB84 quantum cryptography,” N. J. Phys. 11, 065001 (2009). 7. D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” N. J. Phys. 11, 075003 (2009). 8. T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, A. Rarity, J. G. Zeilinger, and H. Weinfurter, “Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km,” Phys. Rev. Lett. 98, 010504 (2007). 9. J. M. Perdigues, B. Furch, C. J. Matos, O. Minster, L. Cacciapuoti, M. Pfennigbauer, M. Aspelmeyer, T. Jennewein, R. Ursin, T. Schmitt-Manderbach, G. Baister, J. Rarity, W. Leeb, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Quantum communications at ESA: Towards a space experiment on the ISS,” Acta Astronaut. 63, 165–178 (2008). 10. R. Ursin, T. Jennewein, J. Kofler, J. M. Perdigues, L. Cacciapuoti, C. J. de Matos, M. Aspelmeyer, A. Valencia, T. Scheidl, A. Fedrizzi, A. Acin, C. Barbieri, G. Bianco, C. Brukner, J. Capmany, S. Cova, D. Giggenbach, W. Leeb, R. H. Hadfield, R. Laflamme, N. Lutkenhaus, G. Milburn, M. Peev, T. Ralph, J. Rarity, R. Renner, E. Samain, N. Solomos, W. Tittel, J. P. Torres, M. Toyoshima, A. Ortigosa-Blanch, V. Pruneri, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, M. Zukowski, and A. Zeilinger, “Space-quest: Experiments with quantum entanglement in space,” Europhys. News 40, 26–29 (2009). 11. M. Jofre, A. Gardelein, G. Anzolin, G. Molina-Terriza, J. P. Torres, M. W. Mitchell, and V. Pruneri, “100 MHz Amplitude and Polarization Modulated Optical Source for Free-Space Quantum Key Distribution at 850 nm,” J. Lightwave Technol. 28, 2572–2578 (2010). 12. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005). 13. G. Brassard and L. Salvail, “Secret Key Reconciliation by Public Discussion,” Advances in Cryptology - EUROCRYPT ’93 765/1994, 410–423 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublication72f8db7f-8a25-4d15-9162-486b0f884481
relation.isAuthorOfPublication.latestForDiscovery72f8db7f-8a25-4d15-9162-486b0f884481

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bernabeu,E11libre.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format

Collections