Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Evaluating early warning and coincident indicators of business cycles using smooth trends

dc.contributor.authorBujosa Brun, Marcos
dc.contributor.authorGarcía-Ferrer, Antonio
dc.contributor.authorde Juan, Aránzazu
dc.contributor.authorMartín-Arroyo, Antonio
dc.date.accessioned2023-06-15T07:49:10Z
dc.date.available2023-06-15T07:49:10Z
dc.date.issued2019
dc.description.abstractWe present a composite coincident indicator designed to capture the state of the Spanish economy. Our approach, based on smooth trends, guarantees that the resulting indicators are reasonably smooth and issue stable signals, reducing the uncertainty. The coincident indicator has been checked by comparing it with the one recently proposed by the Spanish Economic Association index. Both indexes show similar behavior and ours captures very well the beginning and end of the official recessions and expansion periods. Our coincident indicator also tracks very well alternative mass media indicators typically used in the political science literature. We also update our composite leading indicator (Bujosa, Garc ??a-Ferrer, and de Juan, 2013). It systematically predicts the peaks and troughs of the new Spanish Economic Association index and provides significant aid in forecasting annual GDP growth rates. Using only real data available at the beginning of each forecast period, our indicator one step-ahead forecasts shows improvements over other individual alternatives and different forecast combinations.
dc.description.departmentDepto. de Análisis Económico y Economía Cuantitativa
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/55217
dc.identifier.doi0.1002/for.2601
dc.identifier.issn1099-131X
dc.identifier.officialurlhttps://onlinelibrary.wiley.com/doi/full/10.1002/for.2601
dc.identifier.urihttps://hdl.handle.net/20.500.14352/141.1
dc.journal.titleJournal of Forecasting
dc.language.isoeng
dc.publisherJohn Wiley & Sons Ltd
dc.rights.accessRightsopen access
dc.subject.keywordEconomía española
dc.subject.keywordIndicadores económicos.
dc.subject.ucmEconometría (Economía)
dc.subject.ucmIndicadores económicos
dc.subject.unesco5302 Econometría
dc.subject.unesco5302.01 Indicadores Económicos
dc.titleEvaluating early warning and coincident indicators of business cycles using smooth trends
dc.typejournal article
dcterms.referencesAger, P., M. Kappler, and S. Osterloh (2009). The accuracy and efficiency of the consensus forecasts: A further application and extension of the pooled approach. International Journal of Forecasting 25 (1), 167–181. Altissimo, F., R. Cristadoro, M. Forni, M. Lippi, and G. Veronese (2010). New eurocoin: tracking economic growth in real time. The review of economics and statistics 92 (4), 1024–1034. Alvarez, R., M. Camacho, and G. Pérez-Quirós (2016). Aggregate versus disaggregate in formation in dynamic factor models. International Journal of Forecasting 32 (3), 680 – 694. Arroyo, A. S. M. and A. de Juan (2017, September). Simplex combination and selection of forecasts. Granada. International Work-Conference of Time Series. Aruoba, S. B., F. X. Diebold, and C. Scotti (2009). Real-time measurement of business conditions. Journal of Business & Economic Statistics 27 (4), 417–427. Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70 (1), 191–221. Boivin, J. and S. Ng (2006). Are more data always better for factor analysis. Journal of Econometrics 132, 169–194. Bujosa, M., A. Bujosa, and A. Garc´?a-Ferrer (2015). Mathematical framework for pseudospectra of linear stochastic difference equations. IEEE Transactions on Signal Processing 63 (24), 6498–6509. Bujosa, M. and A. García-Ferrer (2014, December). Outlier detection in unobserved harmonic regression models. ERCIM-CFE, University of Pisa, Italy. Bujosa, M., A. Garc´?a-Ferrer, and A. de Juan (2013). Predicting recessions with factor linear dynamic harmonic regressions. Journal of Forecasting 32 (6), 481–499. Bujosa, M., A. Garc´?a-Ferrer, and P. C. Young (2007, October). Linear dynamic harmonic regression. Comput. Stat. Data Anal. 52 (2), 999–1024. Burns, A. F. and W. C. Mitchell (1946). Measuring the Business Cycle. New York: National Bureau of Economic Research (NBER). Camacho, M., G. P´erez-Quir´os, and P. Poncela (2013). Short-term forecasting for empirical economists: A survey of the recently proposed algorithms. Foundations and Trends in Econometrics 6 (2), 101–161. Capistrán, C. and G. López-Moctezuma (2014). Forecast revisions of mexican inflation and gdp growth. International Journal of Forecasting 30 (2), 177–191. Carvalho, F. A. and A. Minella (2012). Survey forecasts in brazil: a prismatic assessment of epidemiology, performance, and determinants. Journal of International Money and Finance 31 (6), 1371–1391. Chen, Q., M. Costantini, and B. Deschamps (2016). How accurate are professional forecasts in asia? evidence from ten countries. International Journal of Forecasting 32 (1), 154–167. Claeskens, G., J. R. Magnus, A. L. Vasnev, and W. Wang (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting 32 (3), 754–762. Clements, M. P. and A. B. Galv˜ao (2009). Forecasting us output growth using leading indicators: An appraisal using midas models. Journal of Applied Econometrics 24 (7), 1187–1206. Corona, F., P. Poncela, and E. Ruiz (2017). Determining the number of factors after stationary univariate transformations. Empirical Economics 53 (1), 351–372. Deschamps, B. and P. Bianchi (2012). An evaluation of chinese macroeconomic forecasts. Journal of Chinese Economic and Business Studies 10 (3), 229–246. Diebold, F. X. and R. S. Mariano (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics 20 (1), 134–144. Doms, M. E. and N. J. Morin (2004). Consumer sentiment, the economy, and the news media. Technical Report WP-09, Federal Reserve Bank of San Francisco. Dovern, J. and J. Weisser (2011). Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the g7. International Journal of Forecasting 27 (2), 452–465. Drehmann, M. and M. Juselius (2014). Evaluating early warning indicators of banking crises: Satisfying policy requirements. International Journal of Forecasting 30 (3), 759–780. Emerson, R. A. and D. F. Hendry (1996, July). An evaluation of forecasting using leading indicators. Journal of Forecasting 15 (4), 271–91. Foroni, C., M. Marcellino, and C. Schumacher (2015). Unrestricted mixed data sampling (midas): Midas regressions with unrestricted lag polynomials. Journal of the Royal Statistical Society: Series A (Statistics in Society) 178 (1), 57–82. García-Ferrer, A. and M. Bujosa-Brun (2000, Jun). Forecasting OECD industrial turning points using unobserved components models with business survey data. International Journal of Forecasting 16 (2), 207–227. García-Ferrer, A. and P. Poncela (2002). Forecasting european gnp data through common factor models and other procedures. Journal of Forecasting 21 (4), 225–244. García-Ferrer, A., R. Queralt, and C. Blazquez (2001). A growth cycle characterisation and forecasting of the Spanish economy: 1970–1998. International Journal of Forecasting 17 (3), 517–532. Genre, V., G. Kenny, A. Meyler, and A. Timmermann (2013). Combining expert forecasts: Can anything beat the simple average? International Journal of Forecasting 29 (1), 108–121. Ghysels, E. (2016). Macroeconomics and the reality of mixed frequency data. Journal of Econometrics 193 (2), 294–314. Ghysels, E., D. Osborn, and P. Rodrigues (2006). Leading indicators. In G. Elliot, C. Granger, and A. Timmerman (Eds.), Handbook of Forecasting, pp. 659–711. Amsterdam: Elsevier. Ghysels, E., P. Santa-Clara, and R. Valkanov (2006). Predicting volatility: getting the most out of return data sampled at different frequencies. Journal of Econometrics 131 (1), 59–95. Koopman, S. J. and N. Shephard (Eds.) (2015). Unobserved components and time series econometrics. Oxford University Press. Lam, C. and Q. Yao (2012). Factor modeling for high-dimensional time series: inference for the number of factors. The Annals of Statistics 40 (2), 694–726. Leamer, E. E. (2009). Macroeconomic Patterns and Stories. Berlin: Springer-Verlag. Leamer, E. E. (2012). The context matters: Comment on Jerome H. Friedman,”Fast sparse regression and classification”. International Journal of Forecasting 28 (3), 741–748. Lischka, J. A. (2015). What follows what? relations between economic indicators, economic expectations of the public, and news on the general economy and unemployment in germany, 2002-2011. Journalism & Mass Communication Quarterly 92 (2), 374–398. Lütkepohl, H. (1993, August). Introduction to Multiple Time Series Analysis (Second ed.). Heidelberg, Germany: Springer. Mariano, R. S. and Y. Murasawa (2003). A new coincident index of business cycles based on monthly and quarterly series. Journal of applied Econometrics 18 (4), 427–443. Matas-Mir, A., D. R. Osborn, and M. J. Lombardi (2008). The effect of seasonal adjustment on the properties of bisiness cycle regimes. Journal of Applied Econometrics 23, 257–278. Niemira, M. P. and P. A. Klein (1994). Foresting Financial and Economic Cycle. Nueva York: John Wiley & Sons. Paap, R., R. Segers, and D. van Dijk (2009). Do leading indicators lead peaks more than troughs? Journal of Business & Economic Statistics 27 (4), 528–543. Peña, D. and P. Poncela (2006, april). Nonstationary dynamic factor analysis. Journal of Statistical Planning and Inference 136 (4), 1237–1257. Phillps, K. and M. Boldin (2017, June). Testing and adjusting for sharp breaks in seasonal patterns: The case of US GDP data. Paper presented at the 37th International Symposium on Forecasting Cairns, Australia. Poncela, P. (2012). Further research on conditionally heteroskedastic factor models. International Journal of Forecasting 28, 94–96. Poncela, P. and A. Garc´?a-Ferrer (2014). The effects of disaggregation on forecasting nonstationary time series. Journal of Forecasting 33 (4), 300–314. Poncela, P. and E. Ruiz (2015). More is not always better: Back to the kalman filter in dynamic factor models. See Koopman and Shephard (2015), Chapter 11, pp. 250–271. Rülke, J.-C., M. Silgoner, and J. Wörz (2016). Herding behavior of business cycle forecasters. International Journal of Forecasting 32 (1), 23 – 33. Sims, C. A. (2012, Spring). Comments and discussion on stock, j.h. and watson, m.w. ”disentangling the channels of the 2007–09 recession”. Brookings Papers on Economic Activity, 141–148. Soroka, S. N., D. A. Stecula, and C. Wlezien (2015). It’s (change in) the (future) economy, stupid: economic indicators, the media, and public opinion. American Journal of Political Science 59 (2), 457–474. Soto, I. (2017). La informaci´on econ´omica ante los cambios de ciclo. sesgos profesionales y editoriales de la prensa nacional durante las legislaturas VIII, IX y X. In 13er Congreso de la Asociación Española de la Ciencia Política y de la Administración, Santiago de Compostela. AECPA. Stock, J. and M. Watson (2003). How leading indicator forecasts perform during the 2001 recession? Economic Quarterly 89, 71–90. Stock, J. H. and M. W. Watson (1991). A probability model of coincident economic indicators. In K. Lahiri and G. H. Moore (Eds.), Leading Economic Indicators: New Approaches and Forecasting Records, pp. 63–90. Cambridge: Cambridge University Press. Stock, J. H. and M. W. Watson (2002). Forecasting using principal components from a large number of predictors. Journal of the American statistical association 97 (460), 1167–1179. Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting 1, 135–196. Young, P. C., D. Pedregal, and W. Tych (1999, November). Dynamic Harmonic Regression. Journal of Forecasting 18, 369–394.
dspace.entity.typePublication
relation.isAuthorOfPublication3e6ecbfe-83ad-404d-8f47-b6e76491c702
relation.isAuthorOfPublication.latestForDiscovery3e6ecbfe-83ad-404d-8f47-b6e76491c702

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
EvaluatingEarlyWarning.pdf
Size:
553.6 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Bujosa_FOR.pdf
Size:
728.96 KB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2*
2023-06-15 09:49:10
Version created in EPrints
2023-06-15 09:49:10
Version created in EPrints
* Selected version