Nonclassical polarization dynamics in classical-like states
dc.contributor.author | Luis Aina, Alfredo | |
dc.contributor.author | Sanz, Ángel S. | |
dc.date.accessioned | 2023-06-18T06:47:24Z | |
dc.date.available | 2023-06-18T06:47:24Z | |
dc.date.issued | 2015-08-18 | |
dc.description | ©2015 American Physical Society. We acknowledge financial support from Spanish Ministerio de Economia y Competitividad Projects No. FIS2012-33152 and No. FIS2012-35583 and from the Comunidad Autonoma de Madrid research consortium QUITEMAD+ Grant No. S2013/ICE-2801. | |
dc.description.abstract | Quantum polarization is investigated by means of a trajectory picture based on the Bohmian formulation of quantum mechanics. Relevant examples of classical-like two-mode field states are thus examined, namely, Glauber and SU(2) coherent states. Although these states are often regarded as classical, the analysis here shows that the corresponding electric-field polarization trajectories display topologies very different from those expected from classical electrodynamics. Rather than incompatibility with the usual classical model, this result demonstrates the dynamical richness of quantum motions, determined by local variations of the system quantum phase in the corresponding (polarization) configuration space, absent in classical-like models. These variations can be related to the evolution in time of the phase, but also to its dependence on configurational coordinates, which is the crucial factor to generate motion in the case of stationary states like those considered here. In this regard, for completeness these results are compared with those obtained from nonclassical NOON states. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economia y Competitividad (MINECO), España | |
dc.description.sponsorship | Comunidad Autonoma de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/33414 | |
dc.identifier.doi | 10.1103/PhysRevA.92.023832 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevA.92.023832 | |
dc.identifier.relatedurl | http://journals.aps.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24186 | |
dc.issue.number | 2 | |
dc.journal.title | Physical review A | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FIS2012-33152 | |
dc.relation.projectID | FIS2012-35583 | |
dc.relation.projectID | QUITEMAD+ (S2013/ICE-2801) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Single-photon states | |
dc.subject.keyword | Quantum-mechanics | |
dc.subject.keyword | Bohmian mechanics | |
dc.subject.keyword | Magnetic monopoles | |
dc.subject.keyword | Coherent states | |
dc.subject.keyword | Spin ice | |
dc.subject.keyword | Phase measurements | |
dc.subject.keyword | Wave-function | |
dc.subject.keyword | Trajectories | |
dc.subject.keyword | Field | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Nonclassical polarization dynamics in classical-like states | |
dc.type | journal article | |
dc.volume.number | 92 | |
dcterms.references | [1] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999). [2] S. De Bièvre, J. Phys. A 25, 3399 (1992). [3] J. Pollet, O.Méplan, andC.Gignoux, J. Phys.A28, 7287 (1995). [4] A. Luis, Phys. Rev. A 66, 013806 (2002). [5] J. Liñares, M. C. Nistal, D. Barral, and V. Moreno, Eur. J. Phys. 31, 991 (2010). [6] J. Liñares, D. Barral, M. C. Nistal, and V. Moreno, J. Mod. Opt. 58, 711 (2011). [7] A. S. Sanz and S. Miret-Artés, A Trajectory Description of Quantum Processes. I. Fundamentals (Springer, Berlin, 2012). [8] A. S. Sanz, M. Davidović, M. Božić, and S. Miret-Artés, Ann. Phys. 325, 763 (2010). [9] A. Luis and A. S. Sanz, Phys. Rev. A 87, 063844 (2013). [10] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995); O. Giraud, P. Braun, and D. Braun, Phys. Rev. A 78, 042112 (2008). [11] P. W. Atkins and J. C. Dobson, Proc. R. Soc. Lond. A 321, 321 (1971). [12] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [13] P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, UK, 1993). [14] A. S. Sanz and S. Miret-Artés, A Trajectory Description of Quantum Processes. II. Applications (Springer, Berlin, 2014). [15] C. W. Gardiner and P. Zoller, Quantum Noise (Springer-Verlag, Berlin, 1991). [16] D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, 3rd ed. (Oxford University Press, Oxford, UK, 1999). [17] M.V. Berry, in LesHouches Lecture Series SessionXXXV, edited by R. Balian, M. Kl´eman, and J.-P. Poirier (North-Holland, Amsterdam, 1981), pp. 453–543. [18] M. V. Berry, in Wave Geometry: A Plurality of Singularities in Quantum Coherence, edited by J. S. Anandan (World Scientific, New York, 1991), pp. 92–98. [19] M. V. Berry andM. R. Dennis, Proc. R. Soc. A 457, 141 (2001). [20] J. O. Hirschfelder and A. C. Christoph, J. Chem. Phys. 61, 5435 (1974). [21] J. O. Hirschfelder, Ch. J. Goebel, and L. W. Bruch, J. Chem. Phys. 61, 5456 (1974). [22] A. S. Sanz, F. Borondo, and S. Miret-Artés, Phys. Rev. B 69, 115413 (2004). [23] A. S. Sanz, F. Borondo, and S.Miret-Artés, J. Chem. Phys. 120, 8794 (2004). [24] M. V. Berry, J. Phys. A 38, L745 (2005). [25] E. Merzbacher, Am. J. Phys. 30, 237 (1962). [26] J. Riess, Phys. Rev. D 2, 647 (1970). [27] J. Riess, Phys. Rev. B 13, 3862 (1976). [28] P. A. M. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931). [29] I. Bialynicki-Birula and Z. Bialynicka-Birula, Phys. Rev. D 3, 2410 (1971). [30] D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Science 326, 411 (2009). [31] T. Fennell, P. P. Deen, A. R. Wildes, K. Schmalzl, D. Prabhakaran, A. T. Boothroyd, R. J. Aldus,D. F.McMorrow, and S. T. Bramwell, Science 326, 415 (2009). [32] S. T. Bramwell, S. R. Giblin, S. Calder, R. Aldus, D. Prabhakaran, and T. Fennell, Nature 461, 956 (2009). [33] H. Kadowaki, N. Doi, Y. Aoki, Y. Tabata, T. J. Sato, J.W. Lynn, K. Matsuhira, and Z. Hiroi, J. Phys. Soc. Jpn. 78, 103706 (2009). [34] M. W. Ray, E. Ruokokoski, S. Kandel, M. M¨ott¨onen, and D. S. Hall, Nature 505, 657 (2014); V. Pietilä andM.Möttönen, Phys. Rev. Lett. 103, 030401 (2009). [35] N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990). [36] J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). [37] Ph.Walther, J.-W. Pan, M. Aspelmeyer, R. Ursin, S. Gasparoni, and A. Zeilinger, Nature 429, 158 (2004). [38] M.W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature 429, 161 (2004). [39] A. P. Alodjants and S. M. Arakelian, J. Mod. Opt. 46, 475 (1999). [40] A. B. Klimov, L. L. Sánchez-Soto, E. C. Yustas, J. Söderholm, and G. Björk, Phys. Rev. A 72, 033813 (2005). [41] G. Björk, J. Söderholm, L. L. Sánchez-Soto, A. B. Klimov, I. Ghiu, P. Marian, and T. A. Marian, Opt. Commun. 283, 4440 (2010). [42] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988). [43] Y. Aharonov and L. Vaidman, Phys. Rev. A 41, 11 (1990). [44] H. M. Wiseman, New J. Phys. 9, 165 (2007). [45] S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011). [46] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, Nature 474, 188 (2011). [47] J. Fischbach andM. Freyberger,Phys. Rev.A86, 052110 (2012). [48] A. Benseny, G. Albareda, A. S. Sanz, J. Mompart, and X. Oriols, Eur. Phys. J. D 68, 286 (2014). [49] R. H. Parmenter and R. W. Valentine, Phys. Lett. A 201, 1 (1995); Erratum: ,213, 319 (1996). [50] A. J.Makowski andM. Fra˛ckowiak, Acta Phys. Pol. B 32, 2831 (2001). [51] H. Frisk, Phys. Lett. A 227, 139 (1997). [52] D. A. Wisniacki and E. R. Pujals, Europhys. Lett. 71, 159 (2005). [53] D. A. Wisniacki, E. R. Pujals, and F. Borondo, Europhys. Lett. 73, 671 (2006). [54] A. Luis, Phys. Rev. A 73, 063806 (2006). [55] L. M. Johansen, Phys. Lett. A 329, 184 (2004). [56] L. M. Johansen and A. Luis, Phys. Rev. A 70, 052115 (2004). [57] R. I. Sutherland, J. Math. Phys. 23, 2389 (1982). [58] K. K. Wan and P. J. Sumner, Phys. Lett. A 128, 458 (1988). [59] J. G. Muga, J. P. Palao, and R. Sala, Phys. Lett. A 238, 90 (1998). [60] B. J. Hiley, Found. Phys. 40, 356 (2010). [61] B. J. Hiley, J. Phys: Conf. Ser. 361, 012014 (2012). [62] A. Luis, Phys. Rev. A 67, 064101 (2003). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 | |
relation.isAuthorOfPublication.latestForDiscovery | b6f1fe2b-ee48-4add-bb0d-ffcbfad10da2 |
Download
Original bundle
1 - 1 of 1