Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Classifying quantum phases using MPS and PEPS

dc.contributor.authorSchuch, Norbert
dc.contributor.authorPérez García, David
dc.contributor.authorCirac, Ignacio
dc.date.accessioned2023-06-20T00:04:34Z
dc.date.available2023-06-20T00:04:34Z
dc.date.issued2011
dc.description.abstractWe give a classification of gapped quantum phases of one-dimensional systems in the framework of matrix product states (MPS) and their associated parent Hamiltonians, for systems with unique as well as degenerate ground states and in both the absence and the presence of symmetries. We find that without symmetries, all systems are in the same phase, up to accidental ground-state degeneracies. If symmetries are imposed, phases without symmetry breaking (i.e., with unique ground states) are classified by the cohomology classes of the symmetry group, that is, the equivalence classes of its projective representations, a result first derived by Chen, Gu, and Wen [Phys. Rev. B 83, 035107 (2011)]. For phases with symmetry breaking (i.e., degenerate ground states), we find that the symmetry consists of two parts, one of which acts by permuting the ground states, while the other acts on individual ground states, and phases are labeled by both the permutation action of the former and the cohomology class of the latter. Using projected entangled pair states (PEPS), we subsequently extend our framework to the classification of two-dimensional phases in the neighborhood of a number of important cases, in particular, systems with unique ground states, degenerate ground states with a local order parameter, and topological order. We also show that in two dimensions, imposing symmetries does not constrain the phase diagram in the same way it does in one dimension. As a central tool, we introduce the isometric form, a normal form for MPS and PEPS, which is a renormalization fixed point. Transforming a state to its isometric form does not change the phase, and thus we can focus on to the classification of isometric forms.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. FP7
dc.description.statussubmitted
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12153
dc.identifier.doi10.1103/PhysRevB.84.165139
dc.identifier.issn1098-0121, ESSN: 1550-235X
dc.identifier.officialurlhttp://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.165139
dc.identifier.urihttps://hdl.handle.net/20.500.14352/41896
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDQUEVADIS (233859)
dc.rights.accessRightsopen access
dc.subject.cdu530.145
dc.subject.keywordTeoría cuántica
dc.subject.keywordQuantum Physics
dc.subject.keywordStrongly Correlated Electrons
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleClassifying quantum phases using MPS and PEPS
dc.typejournal article
dc.volume.number84
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1010.3732v3.pdf
Size:
510.12 KB
Format:
Adobe Portable Document Format

Collections