Anderson localization in Euclidean random matrices
dc.contributor.author | Ciliberti, S. | |
dc.contributor.author | Grigera, T.S. | |
dc.contributor.author | Martín Mayor, Víctor | |
dc.contributor.author | Parisi, G. | |
dc.contributor.author | Verrocchio, P. | |
dc.date.accessioned | 2023-06-20T12:40:30Z | |
dc.date.available | 2023-06-20T12:40:30Z | |
dc.date.issued | 2005-04-11 | |
dc.description | © 2005 The American Physical Society. We acknowledge partial support from MCyT, Spain (Grants No. FPA2001-1813, No. FPA2000-0956, and No. BFM2003-08532-C03) and ANPCyT, Argentina. S.C. was supported by the ECHP program (Grant No. HPRN-CT2002-00307). V.M.-M. was supported by the Ramón y Cajal program, and P.V. by the European Commission (Grant No. MCFI-2002-01262). T.S.G. was supported by CONICET (Argentina). | |
dc.description.abstract | We study the spectra and localization properties of Euclidean random matrices defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold in topologically disordered soff-latticed systems. We solve numerically an equation sexact on the random graphd for the probability distribution function of the diagonal elements of the resolvent matrix, with a population dynamics algorithm sPDAd. We show that the localization threshold can be estimated by studying the stability of a population of real resolvents under the PDA. An application is given in the context of the instantaneous normal modes of a liquid. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MCyT, Spain | |
dc.description.sponsorship | ANPCyT, Argentina | |
dc.description.sponsorship | ECHP | |
dc.description.sponsorship | Ramón y Cajal program | |
dc.description.sponsorship | P.V. by the European Commission | |
dc.description.sponsorship | CONICET (Argentina) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/45748 | |
dc.identifier.doi | 10.1103/PhysRevB.71.153104 | |
dc.identifier.issn | 1098-0121 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevB.71.153104 | |
dc.identifier.relatedurl | https://journals.aps.org | |
dc.identifier.relatedurl | https://arxiv.org/abs/cond-mat/0403122 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/52170 | |
dc.issue.number | 15 | |
dc.journal.title | Physical review B | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FPA2001-1813 | |
dc.relation.projectID | FPA2000-0956 | |
dc.relation.projectID | BFM2003-08532-C03 | |
dc.relation.projectID | HPRN-CT2002-00307 | |
dc.relation.projectID | MCFI-2002-01262 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Instantaneous normal-modes | |
dc.subject.keyword | Density-of-states: Analytic computation | |
dc.subject.keyword | Energy landscape | |
dc.subject.keyword | Random lattices | |
dc.subject.keyword | Field-theory | |
dc.subject.keyword | Liquids | |
dc.subject.keyword | Diffusion | |
dc.subject.keyword | Spectrum | |
dc.subject.keyword | Systems. | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.title | Anderson localization in Euclidean random matrices | |
dc.type | journal article | |
dc.volume.number | 71 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 061118c0-eadf-4ee3-8897-2c9b65a6df66 | |
relation.isAuthorOfPublication.latestForDiscovery | 061118c0-eadf-4ee3-8897-2c9b65a6df66 |
Download
Original bundle
1 - 1 of 1