Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Delocalized vibrations in classical random chains

dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorMaciá Barber, Enrique Alfonso
dc.contributor.authorSánchez, Angel
dc.date.accessioned2023-06-20T19:12:55Z
dc.date.available2023-06-20T19:12:55Z
dc.date.issued1993-09-01
dc.description© 1993 The American Physical Society. We are indebted to Sergey A. Gredeskul for helpful discussions. We also thank the Comision Interministerial de Ciencia y Tecnologia of Spain for financial support under Project No. MAT90-0544 and the Universidad Carlos III de Madrid for computer facilities.
dc.description.abstractNormal modes of one-dimensional disordered chains with two couplings, one of them assigned at random to pairs in an otherwise perfect chain, are investigated. We diagonalize the dynamical matrix to find the normal modes and to study their spatial extent. Multifractal analysis is used to discern clearly the localized or delocalized character of vibrations. In constrast to the general viewpoint that all normal modes in one dimensional random chains are localized, we find a set of extended modes close to a critical frequency, whose number increases with the system size and becomes independent of the defect concentration.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComision Interministerial de Ciencia y Tecnologia of Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28105
dc.identifier.doi10.1103/PhysRevB.48.6054
dc.identifier.issn0163-1829
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.48.6054
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59400
dc.issue.number9
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.page.final6057
dc.page.initial6054
dc.publisherAmerican Physical Society
dc.relation.projectIDMAT90-0544
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordRandom-dimer model
dc.subject.keywordConducting polymers
dc.subject.keywordLocalization
dc.subject.keywordAbsence
dc.subject.ucmFísica de materiales
dc.titleDelocalized vibrations in classical random chains
dc.typejournal article
dc.volume.number48
dcterms.references1. P. Dean, Proc. Phys. Soc. 84, 727 (1964). 2. E. H. Lieb and D. C. Mattis, Mathematical Physics in One Dimension (Academic, New York, 1966). 3. J. M. Ziman, Models of Disorder (Cambridge University Press, London, 1979). 4. D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65, 88 (1990). 5. H.-L. Wu and P. Phillips, Phys. Rev. Lett. 66, 1366 (1991). 6. P. Phillips and H.-L. Wu, Science 252, 1805 (1991). 7. H.-L. Wu, W. Go@, and P. Phillips, Phys. Rev. B 45, 1623 (1992). 8. A. Sanchez and F. Dominguez-Adame (unpublished). 9. M. Schreiber and H. Grussbach, Mod. Phys. Lett. B 6, 851 (1992). 10. J. Canisius and J. L. van Hemmen, J. Phys. C 18, 4873 (1985). 11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in 0, 1st ed. (Cambridge University Press, Cambridge, 1989). 12. H. Matsuda and K. Ishii, Prog. Theor. Phys. Suppl. 45, 56 (1970).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublicationdd37b3ce-0186-44e8-a4b6-62cef9121754
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame168libre.pdf
Size:
170.69 KB
Format:
Adobe Portable Document Format

Collections