Parrondo´s paradox for homeomorphisms
dc.contributor.author | Gasull, A. | |
dc.contributor.author | Hernández Corbato, Luis | |
dc.contributor.author | Ruiz del Portal, Francisco R. | |
dc.date.accessioned | 2023-06-17T08:28:33Z | |
dc.date.available | 2023-06-17T08:28:33Z | |
dc.date.issued | 2021-06-16 | |
dc.description.abstract | We construct two planar homeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f ◦ g and g ◦ f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension greater than 2 and proves for first time the appearance of the Parrondo’s dynamical paradox in odd dimensions. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | FALSE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/73470 | |
dc.identifier.doi | 10.1017/prm.2021.28 | |
dc.identifier.issn | 0308-2105 | |
dc.identifier.officialurl | https://doi.org/10.1017/prm.2021.28 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7231 | |
dc.journal.title | Proceedings of the Royal Society of Edinburgh. Section A: Mathematics | |
dc.language.iso | eng | |
dc.publisher | Cambridge University Press | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 514 | |
dc.subject.keyword | Fixed points | |
dc.subject.keyword | Local and global asymptotic stability | |
dc.subject.keyword | Parrondo’s dynamical paradox | |
dc.subject.keyword | Random dynamical system | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Parrondo´s paradox for homeomorphisms | |
dc.type | journal article | |
dcterms.references | [1] R. B. Ash. Real analysis and probability. Probability and Mathematical Statistics, No. 11. Academic Press, New York-London, 1972. [2] P. Billingsley. Probability and measure. Third edition. Wiley Series in Probability and Mathematical Sta�tistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1995. [3] V. D. Blondel, J. Theys, J. N. Tsitsiklis.When is a pair of matrices stable?. In: V. D. Blondel, A. Megretski (eds.). Unsolved problems in Mathematical Systems and Control Theory. Princeton Univ. Press, NJ 2004. [4] J. S. C´anovas, A. Linero, D. Peralta-Salas. Dynamic Parrondo’s paradox. Physica D 218 (2006) 177–184. [5] A. Cima, A. Gasull, V. Ma˜nosa. Parrondo’s dynamic paradox for the stability of non-hyperbolic fixed points. Discrete Contin. Dyn. Syst. 38 (2018), 889–904. [6] S. Elaydi, R. J. Sacker. Global stability of periodic orbits of non-autonomous difference equations and population biology. J. Differential Equations 208 (2005), 258–273. [7] S. Elaydi, R. J. Sacker. Periodic difference equations, population biology and the Cushing-Henson conjec�tures. Math. Biosci. 201 (2006), 195–207. [8] J. E. Franke, J. F. Selgrade. Attractors for discrete periodic dynamical systems. J. Math. Anal. Appl. 286 (2003), 64–79. [9] G. P. Harmer and D. Abbott. Losing strategies can win by Parrondo’s paradox. Nature (London), Vol. 402, No. 6764 (1999) p. 864. [10] R. Jungers. The Joint Spectral Radius. Spinger, Berlin 2009. [11] J. M. R. Parrondo. How to cheat a bad mathematician. in EEC HC&M Network on Complexity and Chaos (#ERBCHRX-CT940546), ISI, Torino, Italy (1996), Unpublished. [12] J. F. Selgrade, J. H. Roberds. On the structure of attractors for discrete, periodically forced systems with applications to population models. Physica D 158 (2001), 69–82. [13] J. F. Selgrade, J. H. Roberds. Global attractors for a discrete selection model with periodic immigration. J. Difference Equations and Appl. 13 (2007), 275–287. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 87098c4b-1e25-4b37-b466-43febdc67ddf | |
relation.isAuthorOfPublication.latestForDiscovery | 87098c4b-1e25-4b37-b466-43febdc67ddf |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- ruizdelportal_parrondos.pdf
- Size:
- 358.63 KB
- Format:
- Adobe Portable Document Format