Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Performance enhancement of (FAPbI3)1-x(MAPbBr3)x perovskite solar cell with an optimized design

Citation

Abstract

In this paper, an optimized design of (FAPbI3)1-x(MAPbBr3)x perovskite solar cell is numerically investigated using SCAPS-1D software package. A variety of potential charge transport materials are investigated. Cu2O as HTL and ZnO as ETL outperform other choices; they are therefore considered as the best candidates. The impact of the electronic properties of both ZnO/perovskite and Perovskite/Cu2O interfaces on the solar cell performance is thoroughly investigated. We discovered that appropriate values of the conduction band offset (CBO+ = 0.29) and valence band offset (VBO+ = 0.09) assure a “spike-type” band alignment at both interfaces. This choice lowers the unwanted interfacial recombination mechanism, resulting in a challenging PCE. In addition, the impact of the work function of back contact is also investigated. According to simulation findings, Ni back electrodes with a work function of 5.04 eV is appropriate for Zn0.8Mg0.2O/(FAPbI3)0.85(MAPbB3)0.15/Cu2O perovskite solar cell. The optimized FTO/MgZnO/(FAPbI3)0.85(MAPbBr3)0.15/Cu2O/Ni PSC reaches a conversion efficiency as high as 25.86%. These findings will pave the way for the design of low-cost, high-efficiency solar cells.

Research Projects

Organizational Units

Journal Issue

Description

Received 12 August 2022, Revised 10 September 2022, Accepted 23 September 2022, Available online 28 September 2022, Version of Record 1 October 2022.

Keywords

Collections