Super Bloch oscillations in the Peyrard-Bishop-Holstein model

dc.contributor.authorHerrero-Gomez, C.
dc.contributor.authorDíaz García, Elena
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T03:45:35Z
dc.date.available2023-06-20T03:45:35Z
dc.date.issued2012-01-09
dc.description© Elsevier. This work was supported by MICINN (projects MAT2010-17180 and MOSAICO). C. H. acknowledges financial support by MEC (Program Becas de Colaboración).
dc.description.abstractRecently, polarons in the Peyrard-Bishop-Holstein model under DC electric fields were established to perform Bloch oscillations, provided the charge-lattice coupling is not large. In this work, we study this model when the charge is subjected to an applied field with both DC and AC components. Similarly to what happens in the rigid lattice, we find that the carrier undergoes a directed motion or coherent oscillations when the AC field is resonant or detuned with respect to the Bloch frequency, respectively. The electric density current and its Fourier spectrum are also studied to reveal the frequencies involved in the polaron dynamics.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipMEC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27204
dc.identifier.doi10.1016/j.physleta.2011.10.053
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physleta.2011.10.053
dc.identifier.relatedurlhttp://arxiv.org/abs/1110.4470
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44390
dc.issue.number4
dc.journal.titlePhysics Letters A
dc.language.isospa
dc.page.final558
dc.page.initial555
dc.publisherElsevier
dc.relation.projectIDMAT2010-17180
dc.relation.projectIDMOSAICO
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordSemiconductor Superlattice
dc.subject.keywordDna Denaturation
dc.subject.keywordHole Transfer
dc.subject.keywordTransport
dc.subject.ucmFísica de materiales
dc.titleSuper Bloch oscillations in the Peyrard-Bishop-Holstein model
dc.typejournal article
dc.volume.number376
dcterms.references[1] W. A. Harrison, Solid State Theory. Dover Publications, (1980). [2] F. Bloch, Z. Phys. 52, 555 (1928). [3] C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). [4] D. H. Dunlap and V. M. Kenkre, Phys. Lett. A 127, 438 (1988). [5] L. Esaki and R. Tsu, IBM J. Res. Div. 14, 61 (1970). [6] N. W. Ashcroft, and N. D. Mermin, Solid State Physics. Saunders Colledge Publishers, New York, (1976). [7] J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B 46, R7252 (1992). [8] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev. Lett. 70, 3319 (1993). [9] T. Dekorsy, P. Leisching, K. K¨ohler, and H. Kurz, Phys. Rev. B 50, R8106 (1994). [10] R. Martini, G. Klose, H. G. Roskos, H. Kurz, H. T. Grahn, and R. Hey, Phys. Rev. B 54, R14325 (1996). [11] F. Löser, Yu. A. Kosevich, K. K¨ohler, and K. Leo, Phys. Rev. B 61, R13373 (2000). [12] M. BenDahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Phys. Rev. Lett. 76, 4508 (1996). [13] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G. Raizen, Phys. Rev. Lett. 76, 4512 (1996). [14] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998). [15] G. Roati et al., Phys. Rev. Lett. 92, 230402 (2004). [16] L. Fallani, L. De Sarlo, J. E. Lye, M. Modugno, R. Saers, C. Fort, and M. Inguscio, Phys. Rev. Lett. 93, 140406 (2004). [17] A. Trombettoni and A. Smerzi, Phys. Rev. Lett. 86, 2353 (2001). [18] M. Gustavsson et al., Phys. Rev. Lett. 100, 080404 (2008). [19] C. Gaul, R. P. A. Lima, E. Díaz, C. A. Müller, and F. Domínguez-Adame, Phys. Rev. Lett. 102, 255303 (2009). [20] P. Maniadis, G. Kalosakas, K. Ø. Rasmunssen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005). [21] E. Díaz, R.P.A. Lima and F. Domínguez-Adame, Phys. Rev. B 78, 134303 (2008). Kolovsky10Thommen02Alberti09Ivanov08 [22] A. R.. Kolovsky and H. J. Korsch, J. Siberian Federal University, Math. and Phys. 3, 311 (2010). [23] Q. Thommen, J. C. Garreau, and V. Zehnlé, Phys. Rev. A 65, 053406 (2002); [24] A. Alberti et al., Nature Phys. 5, 547 (2009). [25] V. V. Ivanov. A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo, and G. M. Tino Phys. Rev. Lett. 100, 043602 (2008). [26] E. Haller et al., Phys. Rev. Lett. 104, 200403 (2010). [27] R. A. Cateano and M. L. Lyra, Phys. Lett. A 375, 2770 (2011). [28] M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989). [29] T. Dauxois and M. Peyrard, Phys. Rev. E 47, R44 (1993). [30] S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 6 061905 (2002). [31] Y. J. Yan and H. Zhang, J. Theor. Comp. Chem. 1, 225 (2002). [32] A. Voityuk, J. Jortner, M. Bixon, and N. Roesch, J. Chem. Phys. 114, 5614 (2002). [33] K. Senthilkumar, F. C. Grozema, C. F. Guerra, F. M. Bickelhaupt, F. D. Lewis, Y. A. Berlin, M. A. Ratner, and L. D. A. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005). [34] G. Kalosakas, S. Aubry, and G. P. Tsinronis, Phys. Rev. B 58, 3094 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublicationd03da7bf-8066-4f33-93e2-ac077fd4fcb8
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoveryd03da7bf-8066-4f33-93e2-ac077fd4fcb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame12postprint.pdf
Size:
1.65 MB
Format:
Adobe Portable Document Format

Collections