Sur le spectre réel des anneaux locaux complets.

dc.contributor.authorAlonso García, María Emilia
dc.contributor.authorAndradas Heranz, Carlos
dc.date.accessioned2023-06-21T02:01:32Z
dc.date.available2023-06-21T02:01:32Z
dc.date.issued1986
dc.description(French. English summary) [Real spectrum of complete local rings]
dc.description.abstractWe study the real spectrum of complete local rings with real closed residue field. We show that for every constructible subset C the following hold: (1) the closure C of C is constructible, and (2) C has a finite number of connected components and these are constructible. Also we define semialgebroid sets and show that they satisfy the same ‘elementary’ properties as semialgebraic sets.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14883
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/07644442
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64612
dc.issue.number9
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.page.final416
dc.page.initial415
dc.publisherElsevier
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordReal spectrum of complete local rings
dc.subject.keywordSemialgebroid sets
dc.subject.keywordSemialgebraic sets
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleSur le spectre réel des anneaux locaux complets.
dc.typejournal article
dc.volume.number303
dspace.entity.typePublication
relation.isAuthorOfPublication784665c6-b0a6-479e-ac77-a2735116b521
relation.isAuthorOfPublicationa74c23fe-4059-4e73-806b-71967e14ab67
relation.isAuthorOfPublication.latestForDiscovery784665c6-b0a6-479e-ac77-a2735116b521

Download

Collections