Detection of parity violation in chiral molecules by external tuning of electroweak optical activity

dc.contributor.authorBargueño, Pedro
dc.contributor.authorGonzalo Fonrodona, Isabel
dc.contributor.authorPérez de Tudela, Ricardo
dc.date.accessioned2023-06-20T03:50:20Z
dc.date.available2023-06-20T03:50:20Z
dc.date.issued2009-07-23
dc.description©2009 The American Physical Society. This was funded by the MEC (Spain) under Projects No. CTQ2005-09185-C02-02, No. FIS2004-02461, and No. FIS2007-65382 and supported by Grants No. BES-2006-11976 (P.B.) and No. BES-2006-7454 (R.P.deT.).
dc.description.abstractA proposal is made to measure the parity-violating energy difference between enantiomers of chiral molecules by modifying the dynamics of the two-state system using an external chiral field, in particular, circularly polarized light. The intrinsic molecular parity-violating energy could be compensated by this external chiral field, with the subsequent change in the optical activity. From the observation of changes in the time-averaged optical activity of a sample with initial chiral purity and minimized environment effects, the value of the intrinsic parity-violating energy could be extracted. A discussion is made on the feasibility of this measurement.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29832
dc.identifier.doi10.1103/PhysRevA.80.012110
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.80.012110
dc.identifier.relatedurlhttp://www.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44533
dc.issue.number1
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final012110/1
dc.page.initial012110/1
dc.publisherAmerican Physical Society
dc.relation.projectIDCTQ2005-09185-C02-02
dc.relation.projectIDFIS2004-02461
dc.relation.projectIDFIS2007-65382
dc.relation.projectIDBES-2006-11976
dc.relation.projectIDBES-2006-7454
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordEnergy difference
dc.subject.keywordWeak-interactions
dc.subject.keywordPolarized-light
dc.subject.keywordElectric-field
dc.subject.keywordQuantum beats
dc.subject.keywordEnantiomers
dc.subject.keywordSpectroscopy
dc.subject.keywordConservation
dc.subject.keywordHandedness
dc.subject.keywordClusters
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleDetection of parity violation in chiral molecules by external tuning of electroweak optical activity
dc.typejournal article
dc.volume.number80
dcterms.references[1] T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956). [2] C. S. Wu et al., Phys. Rev. 105, 1413 (1957). [3] A. M. Bouchiat and C. C. Bouchiat, Rep. Prog. Phys. 60, 1351 (1997). [4] V. S. Letokhov, Phys. Lett. A 53, 275 (1975). [5] R. A. Hegstrom, D. W. Rein, and P. G. H. Sandars, J. Chem. Phys. 73, 2329 (1980). [6] R. Zanasi, P. Lazzeretti, A. Ligabue, and A. Soncini, Phys. Rev. E 59, 3382 (1999). [7] J. K. Laerdahl, P. Schwerdtfeger, and H. M. Quiney, Phys. Rev. Lett. 84, 3811 (2000). [8] P. Soulard et al., Phys. Chem. Chem. Phys. 8, 79 (2006). [9] J. Crassous et al., Org. Biomol. Chem. 3, 2218 (2005). [10] R. A. Harris and L. Stodolsky, Phys. Lett. 78B, 313 (1978). [11] R. A. Harris and R. Silbey, J. Chem. Phys. 78, 7330 (1983). [12] R. A. Harris, Chem. Phys. Lett. 223, 250 (1994). [13] R. A. Harris, Y. Shi, and J. A. Cina, J. Chem. Phys. 101, 3459 (1994). [14] R. Silbey and R. A. Harris, J. Chem. Phys. 93, 7062 (1989). [15] R. A. Harris and L. Stodolsky, J. Chem. Phys. 74, 2145 (1981). [16] R. A. Harris, Chem. Phys. Lett. 365, 343 (2002). [17] A. J. MacDermott and R. A. Hegstrom, Chem. Phys. 305, 55 (2004). [18] M. Quack, Chem. Phys. Lett. 132, 147 (1986). [19] M. Quack, Angew. Chem., Int. Ed. Engl. 28, 571 (1989). [20] F. Hund, Z. Phys. 43, 805 (1927). [21] M. Quack, Annu. Rev. Phys. Chem. 59, 741 (2008). [22] L. D. Barron, Mol. Phys. 43, 1395 (1981). [23] M. Avalos et al., Chem. Rev. 98, 2391 (1998). [24] J. Shao and P. Hänggi, J. Chem. Phys. 107, 9935 (1997). [25] L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University Press, London, 2004). [26] W. Schollkopf and J. P. Toennies, Science 266, 1345 (1994). [27] S. Goyal, D. L. Schutt, and G. Scoles, Phys. Rev. Lett. 69, 933 (1992). [28] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev. Lett. 67, 516 (1991). [29] J. Kucirka and A. G. Shekhtmann, Phys. Lett. A 221, 273 (1996). [30] K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 2433 (2002). [31] K. Hoki, L. González, and Y. Fujimura, J. Chem. Phys. 116, 8799 (2002). [32] Y. Ma and A. Salam, Chem. Phys. 324, 367 (2006).
dspace.entity.typePublication
relation.isAuthorOfPublicationc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c
relation.isAuthorOfPublication.latestForDiscoveryc1ad80a2-9d2c-49ce-b112-8e3dfa47d18c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gonzalo,I 04 LIBRE.pdf
Size:
103.05 KB
Format:
Adobe Portable Document Format

Collections