Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite

dc.contributor.authorCasarrubios Molina, Laura
dc.contributor.authorMatesanz Sancho, María Concepción
dc.contributor.authorSánchez Salcedo, Sandra
dc.contributor.authorArcos Navarrete, Daniel
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.contributor.authorPortolés Pérez, María Teresa
dc.date.accessioned2023-06-17T21:49:24Z
dc.date.available2023-06-17T21:49:24Z
dc.date.issued2016-11-15
dc.descriptionRESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID N-4501-2014 (Sandra Sánchez Salcedo) ORCID 0000-0002-1889-2057 (Sandra Sánchez Salcedo)
dc.description.abstractHypothesis: Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200ºC) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700ºC) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Experiments: Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages)have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. Findings: This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.facultyFac. de Farmacia
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovacion (MICINN)
dc.description.sponsorshipMinisterio de Economia y Competitividad (MINECO)
dc.description.sponsorshipAgening Network of Excellence
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40894
dc.identifier.doi10.1016/j.jcis.2016.07.075
dc.identifier.issn0021-9797
dc.identifier.officialurlhttps://www.elsevier.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17594
dc.journal.titleJournal of Colloid and Interface Science
dc.language.isoeng
dc.page.final120
dc.page.initial112
dc.publisherElsevier
dc.relation.projectIDMAT2012-35556
dc.relation.projectIDMAT2013-43299-R
dc.relation.projectIDCSO2010-11384-E
dc.rights.accessRightsopen access
dc.subject.cdu546
dc.subject.cdu615.46
dc.subject.keywordNanocrystallinity
dc.subject.keywordHydroxyapatite
dc.subject.keywordSilicon
dc.subject.keywordOsteoclast
dc.subject.keywordOsteoblast
dc.subject.keywordAnoikis
dc.subject.keywordOsteoporosis
dc.subject.keywordCell adhesion
dc.subject.keywordApoptosis
dc.subject.keywordCell cycle
dc.subject.ucmMateriales
dc.subject.ucmQuímica inorgánica (Química)
dc.subject.unesco3312 Tecnología de Materiales
dc.subject.unesco2303 Química Inorgánica
dc.titleNanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite
dc.typejournal article
dc.volume.number482
dcterms.references[1] A.M. Parfitt, Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression, Bone 30 (2002) 5–7. [2] S. Harada, G.A. Rodan, Control of osteoblast function and regulation of bone mass, Nature 423 (2003) 349–355. [3] E.J. Mackie, Osteoblasts: novel roles in orchestration of skeletal architecture, Int. J. Biochem. Cell Biol. 35 (2003) 1301–1305. [4] W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation, Nature 423 (2003) 337–342. [5] A. Qin, T.S. Cheng, N.J. Pavlos, Z. Lin, K.R. Dai, M.H. Zheng, V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption, Int. J. Biochem. Cell Biol. 44 (2012) 1422–1435. [6] H.K. Väänänen, Y.K. Liu, P. Lehenkari, T. Uemara, How do osteoclasts resorb bone?, Mater Sci. Eng. C 6 (1998) 205–209. [7] S.C. Manolagas, Cellular and molecular mechanisms of osteoporosis, Aging 10 (1988) 182–190. [8] T. Luhmann, O. Germershaus, J. Groll, L. Meinel, Bone targeting for the treatment of osteoporosis, J. Control. Release 161 (2012) 198–213. [9] E.M. Carlisle, Silicon as a trace nutrient, Sci. Total Environ. 73 (1998) 95–106. [10] K. Schwarz, A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. 70 (1973) 1608–1612. [11] E.M. Carlisle, In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick, J. Nutr. 106 (1976) 478–484. [12] W.J. Landis, D.D. Lee, J.T. Brenna, S. Chandra, G.H. Morrison, Detection and localization of silicon and associated elements in vertebrate bone tissue by imaging ion microscopy, Calcif. Tissue Int. 38 (1986) 52–59. [13] D.M. Reffitt, D.N. Ogston, R. Jugdaohsingh, H.F. Cheung, B.A. Evans, R.F. Thompson, J.J. Powell, G.N. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone 32 (2003) 127–135. [14] Z. Mladenovic´ , A. Johansson, B. Willman, K. Shahabi, E. Björn, M. Ransjö, Soluble silica inhibits osteoclast formation and bone resorption in vitro, Acta Biomater. 10 (2014) 406–418. [15] H. Li, J. Chang, Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect, Acta Biomater. 9 (2013) 6981–6991. [16] P.J. Bouletreau, S.M. Warren, J.A. Spector, Z.M. Peled, R.P. Gerrets, J.A. Greenwald, M.T. Longaker, Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing, Plast. Reconstr. Surg. 109 (2002) 2384–2397. [17] J.H. Shepherd, D.V. Shepherd, S.M. Best, Substituted hydroxyapatites for bone repair, J. Mater. Sci. - Mater. Med. 23 (2012) 2335–2347. [18] N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, P.A. Revell, A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J. Mater. Sci. - Mater. Med. 13 (2002) 1199–1206. [19] A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calcium phosphate bioceramics, Biomaterials 28 (2007) 4023–4032. [20] M. Bohner, Silicon-substituted calcium phosphates - a critical view, Biomaterials 30 (2009) 6403–6406. [21] F. Balas, J. Pérez-Pariente, M. Vallet-Regí, In vitro bioactivity of siliconsubstituted hydroxyapatites, J. Biomed. Mater. Res. A 66 (2003) 364–375. [22] A.E. Porter, S.M. Best, W. Bonfield, Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications, J. Biomed. Mater. Res. A 68 (2004) 133–141. [23] M.M. Dvorak, A. Siddiqua, D.T. Ward, D.H. Carter, S.L. Dallas, E.F. Nemeth, D. Riccardi, Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones, Proc. Natl. Acad. Sci. 101 (2004) 5140–5145. [24] A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials 24 (2003) 4609–4620. [25] M.C. Matesanz, M.J. Feito, C. Ramírez-Santillán, R.M. Lozano, S. Sánchez- Salcedo, D. Arcos, M. Vallet-Regí, M.T. Portolés, Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite, Macromol. Biosci. 12 (2012) 446–453. [26] A. Balamurugan, A.H.S. Rebelo, A.F. Lemos, J.H.G. Rocha, J.M.G. Ventura, J.M.F. Ferreira, Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response, Dent. Mater. 24 (2008) 1374–1380. [27] D. Arcos, J. Rodríguez-Carvajal, M. Vallet-Regí, Silicon incorporation in hydroxylapatite obtained by controlled crystallization, Chem. Mater. 16 (2004) 2300–2308. [28] S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in Biomedical engineering, biology and medicine, Materials 2 (2009) 1975–2045. [29] E.S. Thian, Z. Ahmad, J. Huang, M.J. Edirisinghe, S.N. Jayasinghe, D.C. Ireland, R. A. Brooks, N. Rushton, W. Bonfield, S.M. Best, The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts, Acta Biomater. 6 (2010) 750–755. [30] S. Samaved, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior, Acta Biomater. 9 (2013) 8037–8045. [31] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials 30 (2009) 2175–2179 [32] A. Quillet-Mary, J.P. Jaffrezou, V. Mansat, C. Bordier, J. Naval, G. Laurent, Implication of mitochondrial hydrogen peroxide generation in ceramideinduced apoptosis, J. Biol. Chem. 272 (1997) 21388–21395. [33] S.M. Frisch, E. Ruoslaht, Integrins and anoikis, Curr. Opin. Cell Biol. 9 (1997) 701–706. [34] S.M. Frisch, R.A. Screaton, Anoikis mechanisms, Curr. Opin. Cell Biol. 13 (2001) 555–562. [35] J. Grossmann, K. Walther, M. Artinger, S. Kiessling, J. Scholmerich, Apoptotic signaling during initiation of detachment-induced apoptosis (‘‘anoikis”) of primary human intestinal epithelial cells, Cell Growth Differ. 12 (2001) 147–155. [36] M. Alcaide, M.C. Serrano, J. Román, M.V. Cabañas, J. Peña, E. Sánchez-Zapardiel, M. Vallet-Regí, M.T. Portolés, Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds, J. Biomed. Mater. Res. A 95 (2010) 793–800. [37] P. Chiarugi, E. Giannoni, Anoikis: a necessary death program for anchoragedependent cells, Biochem. Pharmacol. 76 (2008) 1352–1364. [38] M.C. Matesanz, J. Linares, I. Lilue, S. Sánchez-Salcedo, M.J. Feito, D. Arcos, M. Vallet-Regí, M.T. Portolés, Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity, J. Mater. Chem. B 2 (2014) 2910–2919. [39] M.C. Matesanz, J. Linares, M. Oñaderra, M.J. Feito, F.J. Martínez-Vázquez, S. Sánchez-Salcedo, D. Arcos, M.T. Portolés, M. Vallet-Regí, Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures, Colloids Surf. B 133 (2015) 304–313.
dspace.entity.typePublication
relation.isAuthorOfPublication4d7154a3-79c7-4f0e-ba42-81d562e6e884
relation.isAuthorOfPublication14ed7f4d-b114-4a3c-9d8c-83f05fbfc703
relation.isAuthorOfPublicationd92c7075-3d31-45ec-a18d-35a5010ee8e1
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication4b317058-0bd1-4fd8-afab-5fa79a4b7002
relation.isAuthorOfPublication.latestForDiscovery14ed7f4d-b114-4a3c-9d8c-83f05fbfc703

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
(661) J. Colloid Interf. Sci. 482, 112–120 2016 DANI.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format

Collections