Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Glasius bio-inspired neural networks based UV-C disinfection path planning improved by preventive deadlock processing algorithm

dc.contributor.authorRodrigo-Muñoz, Daniel Vicente
dc.contributor.authorSierra-García, Jesús Enrique
dc.contributor.authorSantos Peñas, Matilde
dc.date.accessioned2024-09-13T13:55:44Z
dc.date.available2024-09-13T13:55:44Z
dc.date.issued2023
dc.description.abstractThe COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C light to automate the disinfection processes. But performing this process in an optimum way introduces some challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the environment. In this work, both challenges are addressed with the design of a complete coverage path planning (CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN), a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed. One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on the performance of the robot navigation.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyInstituto de Tecnología del Conocimiento (ITC)
dc.description.fundingtypeAPC financiada por la UCM
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationRodrigo DV, Sierra-García JE, Santos M. Glasius bio-inspired neural networks based UV-C disinfection path planning improved by preventive deadlock processing algorithm. Advances in Engineering Software. 2023 Jan 1;175:103330.
dc.identifier.doihttps://doi.org/10.1016/j.advengsoft.2022.103330
dc.identifier.urihttps://hdl.handle.net/20.500.14352/108136
dc.issue.number103330
dc.journal.titleAdvances in Engineering Software
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordComplete coverage path planning
dc.subject.keywordMobile robot
dc.subject.keywordUV-C
dc.subject.keywordDeadlocks
dc.subject.keywordEscape routes
dc.subject.ucmRobótica
dc.subject.unesco3311.02 Ingeniería de Control
dc.titleGlasius bio-inspired neural networks based UV-C disinfection path planning improved by preventive deadlock processing algorithm
dc.typejournal article
dc.volume.number175
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AES2023.pdf
Size:
6.23 MB
Format:
Adobe Portable Document Format

Collections