Edge image quality assessment: a new formulation for degraded edge imaging

Thumbnail Image
Full text at PDC
Publication Date
Chevalier dl Río, Margarita
Lakshminarayanan, Vasudevan
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Google Scholar
Research Projects
Organizational Units
Journal Issue
We discuss a formalism to characterize degraded edge images formed in a diffraction limited system (with circular pupil of unit radius) under conditions of incoherent illumination. We introduce a novel definition of degraded edges and consider this approach to model a basic optical mechanism involved in the perception of visual depth and edge detection. We introduce a degradation parameter to quantize the degree of edge blur. We present a generalization of such a procedure by assuming the Heaviside function to be a systematic generator of degraded edges. We reproduce experimentally the predictions made by the formalism proposed herein.
© 1998 Elsevier Science B.V. Reunión Nacional de Óptica de la Sociedad Española de Óptica (SEDO) (1994. 4ª. Granada, España). Congress of the International Commission for Optics (ICO) (17º. 1996. Daejon,Corea del Sur). Optical Society of America (OSA)Annual Meeting (1997. Long Beach, California, EE.UU.). Partial results of this work were presented at the IVth National Meeting of the Spanish Optical Society, SEDO, Granada, Spain, September 1994; the 17th Congress of the International Commission for Optics (ICO), Taejon, Korea, August 1996; and the Annual Meeting of the Optical Society of America, Long Beach, USA, October 1997. The financial support of the Spanish Ministry of Health, the Institute of Health ‘Carlos III’ and the Health Research Foundation, under project 95/1518, and project PR160/93- 4829/93 from the Rectorate of the Complutense University are acknowledged. We are indebted to Ivan Sanz Rodriguez for his collaboration. Also, Carmen Bravo gave us computational assistance at the Computing Center of the Complutense University of Madrid. We thank Professor J.M. Enoch for helpful suggestions.
[1] K.S. Shanmugam, F.M. Dickey, J.A. Green, An optimal frequencydomain filter for edge detection, IEEE Trans. Patt. Anal. Mach. Intell.1 (1) (1979) 37–49. [2] M. Basu, Gaussian derivative model for edge enhancement, Pattern Recog. 27 (11) (1994) 1451–1461. [3] C.S. Williams, O.A. Becklund, Introduction to the optical transferfunction, Wiley Series in Pure and Applied Optics, Wiley, NewYork, 1989, pp. 57–59. [4] L. Yaroslavsky, The theory of optimal methods for localization ofobjects in pictures, in: M.L. Calvo and M. Chevalier (Eds.), Fundamentals, Applications and Analysis of Digital Image Processing, Book Notes, Spanish Optical Society (SEDO), CSIC,Madrid, 1994, pp. 70–272. [5] F. Bergholm, Edge focusing, IEEE Trans. Pattern Anal. Mach. Intell. 9 (6) (1987) 726–740. [6] V. Kayargadde, J.B. Martens, Perceptual characterization of images degraded by blur and noise: model, J. Opt. Soc. Am. A 13 (6) (1996)1178–1188. [7] V. Kayargadde, J.B. Martens, Perceptual characterization of images degraded by blur and noise: experiments, J. Opt. Soc. Am. A 13 (6)(1996) 1166–1177. [8] V. Kayargadde, J.B. Martens, Estimation of perceived image blurusing edge features, Int. J. Imaging Systems Technol. 7 (1996)102–109. [9] R.M. Shapley, D.J. Tolhurst, Edge detectors in human vision, J.Physiol. (Lond.) 229 (1973) 165–183. [10] J.J. Kulikowski, P.E. King-Smith, Spatial arrangement of line, edgeand grating detectors revealed by subthreshold summation, VisionRes. 13 (1973) 1455–1478. [11] D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond.B207 (1980) 187–217. [12] J. Gaskill, Linear Systems, Fourier Transforms and Optics, Wiley,New York, 1978, chap. 11. [13] E.W. Marchand, Derivation of the point spread function from the linespread function, J. Opt. Soc. Am. 54 (1964) 915–919. [14] W. Weinstein, Light distribution in the image of an incoherent illuminated edge, J. Opt. Soc. Am. 44 (8) (1954) 610–615. [15] R. Barakat, A. Houston, Line spread and edge spread functions in the presence of off-axis aberrations, J. Opt. Soc. Am. 55 (1965) 1132–1135. [16] W. H. Swanter, Ch. R. Hayslett, Point spread functions, edge response and modulation transfer functions of obscured aperture opticalsystems, Research Projects Office, Technical Memorandum, USA,1975. [17] M.L. Calvo, A. Manzanares, M. Chevalier, V. Lakshminarayanan, A formalism for analyzing degraded edges using modified Heaviside functions, in: V. Lakshminarayanan (Eds.), Basic and Clinical Applications of Vision Science, Kluwer Academic, Dordrecht, 1997, pp. 77–81. [18] A.P. Pentland, A new sense for depth of field, IEEE Trans. Pattern Anal. Mach. Intell. 9 (4) (1987) 523–531. [19] J.A. Marshall, Ch.A. Burbeck, D. Ariely, J.P. Rolland, K.E. Martin, Occlusion edge blur: a cue to relative visual depth, J. Opt. Soc. Am. 13(4) (1996) 681–688. [20] B.N. Begunov, N.P. Zakaznov, S.I. Kiryushin, V.I. Kuzichev, Optical Instrumentation Theory and Design, Mir, Moscow, 1988, chap. 6,Section 6-2. [21] H. Struve, Wied. Ann. 47 (1882) 1008. [22] W.H. Steel, Calcul de la répartition de la lumière dans l’image d’une ligne, Revu. Opt. 31 (7) (1952) 334–340. [23] A. Manzanares, M.L. Calvo, M. Chevalier, V. Lakshminarayanan, W.H. Line spread Function proposed by, Steel: a revision (TechnicalNote), Appl. Opt. 36 (19) (1997) 4362–4366. [24] M. R. Spiegel, L. Abellanas, Fórmulas y tablas de matemática aplicada, McGraw-Hill, New York, 1988. [25] Gradshteyn, I.M.R., in: A. Jeffrey (Ed.), Table of Integrals, Series and Products, Academic Press, New York, 1994. [26] G.E. Legge, K.T. Mullen, G.C. Woo, F.W. Campbell, Tolerance to visual defocus, J. Opt. Soc. Am. A 4 (1987) 851–863. [27] E.W. Marchand, From line to point spread function: the general case, J. Opt. Soc. Am 55 (4) (1964) 352–355. [28] R. Barakat, A. Houston, Line spread function and cumulative linespread function for systems with rotational symmetry, J. Opt. Soc.Am. 54 (1964) 768–773. [29] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1968, p. 556. [30] J. Rabin, Luminance effects on visual acuity and small letter contrast sensitivity, Optom. Vision Sci. 71 (11) (1994) 685–688. [31] P. Artal, R. Navarro, Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression, J. Opt. Soc. Am. A 11 (1) (1994) 246–249. [32] S. Marcos, E. Moreno, R. Navarro, Depth of field of the human eye, in: Proceedings of the Vth Optical National Meeting, Valencia, Spain, 1997, pp. 335–336 (in Spanish). [33] M.L. Calvo, M. Chevalier, V. Lakshminarayanan, P.K. Mondal, Resolution criteria and modulation transfer function (MTF)/linespread function (LSF) relationship in diffraction limited systems, J.Opt. 25 (1) (1996) 1–21. [34] A. Simon, E. Shaw, M.L. Calvo, Merit functions of CCD cameras based on edge image processing, in: J.S. Chang, J.H. Lee, S.Y. Leeanad C.H. Nam (Eds.), 17th Congress of the International Commission for Optics: Optics for Science and New Technology, Proceedings of SPIE, vol. 2778, 1996, 65–66. [35] S. Daly, Application of a noise-adaptive contrast sensitivity function to image data compression, Opt. Engng 29 (8) (1990) 977–987. [36] I.Sanz, M.L. Calvo and M. Chevalier, Digitally implemented soft edges with predetermined luminance: an analysis of its influence on image degradation, in: E. Wenger et al. (Eds.), Digital Image Processingand Computer Graphics (DIP-97) Proceedings of SPIE, vol.3346, 1998, 72–83. [37] M.L. Calvo, I. Sanz, M. Chevalier, V. Lakshminarayanan, Apsychophysical test based on degraded edge imaging: contrast sensitivity and threshold luminance, in: A. Sanfeliu, J.J. Villanueva, J. Vitriá (Eds.) ,Proceedings of the VIIth National Symposium on Pattern Recognition and Image Analysis UAB, Barcelona, vol. 2, 1997, pp. 118–119. [38] F.W. Campbell, R.W. Gubisch, Optical quality of the human eye, J. Physiol. Lond. 186 (1966) 558–578. [39] F.W. Campbell, J.G. Robson, Applications of Fourier analysis to the visibility of gratings, J. Physiol. Lond. 197 (1968) 551–566. [40] C. Blakemore, F.W. Campbell, On the existance of neurons in the human visual system selectively sensitive to the orientation and size of retinal images, J. Physiol. Lond. 203 (1969) 237–260. [41] H.R. Wilson, J.R. Bergen, A four-mechanism model for threshold spatial vision, Vision Res. 19 (1979) 19–32. [42] H.R. Wilson, D.J. Gelb, Modified line element theory for spatial frequency and width discrimination, J. Opt. Soc. Am. A 1 (1984)124–131. [43] A. Lang, V. Lakshminarayanan, V. Portney, A phenomenological model for interpreting the clinical significance of the in-vitro OTF, J. Opt. Soc. Am. A 10 (1995) 1600–1610. [44] V. Lakshminarayanan, A. Lang, V. Portney, The ‘expected visual outcome’ model: methodology and clinical validation, Optom. VisionSci. 72 (1995) 511–521. [45] P.G.J. Barten, Evaluation of subjective image quality with the square rootintegral method, J. Opt. Soc. Am. A 7 (1990) 2024–2031. [46] C. Owsley, M. Sloane, Contrast sensitivity, acuity and the perceptionof real world targets, Br. J. Ophthal. 71 (1987) 791–796. [47] G.E. Legge, Three perspectives on low vision reading, Optom. VisionSci. 68 (1991) 763–769. [48] G.E. Legge,G.S. Rubin, A. Luebker, Psychophysics of reading—V. Therole of contrast in normal vision, Vision Res. 27 (1987) 1165–1177. [49] W. Adrian, Visibility of targets: model for calculation, Lighting Res.Technol. 21 (1989) 181–188. [50] V. Lakshminarayanan, A. Lang, The relationship between defocused MTF and spatial frequencies needed for letter recognition, in: Vision Science and its Applications. Technical Digest, vol. 1, Optical Society of America, Washington DC, 1995, pp. 159–162. [51] K.N. Ngan, H.C. Koh, W.C. Wong, Hybrid image coding scheme incorporating human visual system characteristics, Opt. Engng. 30(7) (1991) 940–947. [52] L.A. Saghri, P.S. Cheatham, A. Habibi, Image quality measure based on a human visual system model, Opt. Engng. 28 (7) (1989)813–819. [53] R.L. DeValois, K.K. DeValois, Spatial Vision, Oxford University Press, New York, 1988. [54] R.Shapley, D.Man-Kit Lam, Contrast Sensitivity, MIT Press, Cambridge, MA, 1993. [55] M.P.Nadler, D.Miller, D.J.Nadler, Glare and Contrast Sensitivity for Clinicians, Springer, Heidelberg, 1990. [56] M.L. Calvo, M. Chevalier, V. Lakshminarayanan, A. Manzanares, Analysis of the Heaviside function as a systematic generator oflines and edges: failure on LSF/MTF reciprocity and sampling, in: Proceedings of the IVth National meeting of the Spanish OpticalSociety (SEDO), Granada, Spain, 1994, pp. 29–30 (in Spanish). [57] M.L. Calvo, A. Manzanares, M. Chevalier, V. Lakshminarayanan, Edge image processing: an analysis of modified Heaviside functions as degraded edge generators, in: J.S. Chang, J.H. Lee, S.Y. Lee, C.H.Nam (Eds.), Proceedings of the 17th Congress of the International Commision for Optics: Optics for Science and New Technology, Proceedings of SPIE, vol. 2778, 1996, pp. 63–64.