Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the cohomology of Frobenius model Lie algebras

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.date.accessioned2023-06-20T10:34:49Z
dc.date.available2023-06-20T10:34:49Z
dc.date.issued2004
dc.description.abstractLie algebra model theory studies the closure O() of the Gln(C)-orbit in the variety Ln of Lie algebra laws of a law on Cn using nonstandard analysis. In this context, given a Lie algebra law , a contraction of is a law μ with μ 2 O(). On the other hand, a perturbation of in Ln is a μ 2 Ln such that the absolute value of the difference of the structure constants of and μ over a standard basis is smaller than any strictly positive real standard. Keeping this in mind, a Lie algebra g0 = (Cn, μ0) is called a model relative to a property (P) if any Lie algebra law μ satisfying (P)contracts to μ0 and any perturbation of μ0 satisfies (P). The property (P) studied in the article under review is the one to be Frobenius, i.e. the property that there exists a linear form ! 2 g on the 2n-dimensional Lie algebra g whose differential is symplectic, i.e. !n 6= 0. A family F of Lie algebras satisfying a property (P) is called a multiple model relative to (P) if any Lie algebra satisfying (P) contracts to a member of F and any perturbation of a member of F satisfies (P). M. Goze found in [C. R. Acad. Sci., Paris, S´er. I 293, 425–427 a multiple model for the above stated property (P). The authors of the present article compute first and second cohomology space of the Lie algebras in this family with respect to the adjoint representation. Furthermore, they compute the first obstruction for infinitesimal deformations to be prolonged which turns out to be zero.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21292
dc.identifier.citationBermúdez, José Mariá Ancochea, y Rutwig Campoamor-Stursberg. «On the cohomology of frobeniusian model Lie algebras». Forum Mathematicum, vol. 16, n.o 2, enero de 2004. DOI.org (Crossref), https://doi.org/10.1515/form.2004.012.
dc.identifier.doi10.1515/form.2004.012
dc.identifier.issn0933-7741
dc.identifier.officialurlhttps://doi.org/10.1515/form.2004.012
dc.identifier.relatedurlhttp://www.degruyter.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50633
dc.issue.number2
dc.journal.titleForum Mathematicum
dc.page.final262
dc.page.initial249
dc.publisherWALTER DE GRUYTER
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.554.3
dc.subject.keywordModel Lie algebra
dc.subject.keywordFrobenius Lie algebra
dc.subject.keywordMultiple model Lie algebra
dc.subject.keywordCohomology with adjoint coefficients
dc.subject.keywordInfinitesimal deformations
dc.subject.keywordObstruction
dc.subject.keywordContraction
dc.subject.keywordPerturbation
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn the cohomology of Frobenius model Lie algebrasen
dc.typejournal article
dc.volume.number16
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Collections