On the Picard Group of Low-codimension Subvarieties
dc.contributor.author | Arrondo Esteban, Enrique | |
dc.contributor.author | Caravantes, Jorge | |
dc.date.accessioned | 2023-06-20T00:09:06Z | |
dc.date.available | 2023-06-20T00:09:06Z | |
dc.date.issued | 2009 | |
dc.description.abstract | We introduce a method to determine if n-dimensional smooth subvarieties of an ambient space of dimension at most 2n - 2 inherits the Picard group from the ambient space (as it happens when the ambient space is a projective space, according to results of Barth and Larsen). As an application, we give an affirmative answer (LIP to some mild natural numerical conditions) when the ambient space is a Grassmannian of lines (thus improving results of Barth, Van de Ven and Sommese) or a product of two projective spaces of the same dimension. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia y Tecnología (España) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14769 | |
dc.identifier.issn | 0022-2518 | |
dc.identifier.officialurl | http://arxiv.org/pdf/math/0511267.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42091 | |
dc.issue.number | 3 | |
dc.journal.title | Indiana University Mathematics Journal | |
dc.language.iso | eng | |
dc.page.final | 1042 | |
dc.page.initial | 1023 | |
dc.publisher | Indiana University | |
dc.relation.projectID | BFM2003-03971 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Projective spaces | |
dc.subject.keyword | Manifolds | |
dc.subject.keyword | Low codimension | |
dc.subject.keyword | Picard group | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | On the Picard Group of Low-codimension Subvarieties | |
dc.type | journal article | |
dc.volume.number | 58 | |
dcterms.references | [1] E. Arrondo, Subcanonicity of codimension two subvarieties, Rev. Mat. Compl. 18 (2005), 69–80. [2] E, Arrondo, M.L. Fania, Evidence to subcanonicity of codimension two subvarieties of G(1, 4), to appear on Int. J. Math. [3] W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math. 92 (1970), 951–967. [4] W. Barth, M.E. Larsen, On the homotopy-groups of complex projective manifolds, Math Scand. 30 (1972), 88-94. [5] W. Barth and A. Van de Ven, On the geometry in codimension 2 of Grassmann manifolds, Lecture Notes in Math. 412, Springer Verlag (1974), 1–35. [6] O. Debarre, Th´eor`emes de connexit´e pour les produits d’espaces projectifs et les grassmanniennes, Amer. J. Math. 118 (1996), no. 6, 1347–1367. [7] R. Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. [8] S.L. Kleiman, D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082. [9] M.E. Larsen, On the topology of projective manifolds, Invent. Math. 19 (1973), 251–260. [10] A.J. Sommese, Complex subspaces of homogeneous complex manifolds. II. Homotopy results, Nagoya Math. J. 86, 101–129. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 | |
relation.isAuthorOfPublication.latestForDiscovery | 5bd88a9c-e3d0-434a-a675-3221b2fde0e4 |
Download
Original bundle
1 - 1 of 1