Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

On the Picard Group of Low-codimension Subvarieties

dc.contributor.authorArrondo Esteban, Enrique
dc.contributor.authorCaravantes, Jorge
dc.date.accessioned2023-06-20T00:09:06Z
dc.date.available2023-06-20T00:09:06Z
dc.date.issued2009
dc.description.abstractWe introduce a method to determine if n-dimensional smooth subvarieties of an ambient space of dimension at most 2n - 2 inherits the Picard group from the ambient space (as it happens when the ambient space is a projective space, according to results of Barth and Larsen). As an application, we give an affirmative answer (LIP to some mild natural numerical conditions) when the ambient space is a Grassmannian of lines (thus improving results of Barth, Van de Ven and Sommese) or a product of two projective spaces of the same dimension.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia y Tecnología (España)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14769
dc.identifier.issn0022-2518
dc.identifier.officialurlhttp://arxiv.org/pdf/math/0511267.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42091
dc.issue.number3
dc.journal.titleIndiana University Mathematics Journal
dc.language.isoeng
dc.page.final1042
dc.page.initial1023
dc.publisherIndiana University
dc.relation.projectIDBFM2003-03971
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordProjective spaces
dc.subject.keywordManifolds
dc.subject.keywordLow codimension
dc.subject.keywordPicard group
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleOn the Picard Group of Low-codimension Subvarieties
dc.typejournal article
dc.volume.number58
dcterms.references[1] E. Arrondo, Subcanonicity of codimension two subvarieties, Rev. Mat. Compl. 18 (2005), 69–80. [2] E, Arrondo, M.L. Fania, Evidence to subcanonicity of codimension two subvarieties of G(1, 4), to appear on Int. J. Math. [3] W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math. 92 (1970), 951–967. [4] W. Barth, M.E. Larsen, On the homotopy-groups of complex projective manifolds, Math Scand. 30 (1972), 88-94. [5] W. Barth and A. Van de Ven, On the geometry in codimension 2 of Grassmann manifolds, Lecture Notes in Math. 412, Springer Verlag (1974), 1–35. [6] O. Debarre, Th´eor`emes de connexit´e pour les produits d’espaces projectifs et les grassmanniennes, Amer. J. Math. 118 (1996), no. 6, 1347–1367. [7] R. Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. [8] S.L. Kleiman, D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061-1082. [9] M.E. Larsen, On the topology of projective manifolds, Invent. Math. 19 (1973), 251–260. [10] A.J. Sommese, Complex subspaces of homogeneous complex manifolds. II. Homotopy results, Nagoya Math. J. 86, 101–129.
dspace.entity.typePublication
relation.isAuthorOfPublication5bd88a9c-e3d0-434a-a675-3221b2fde0e4
relation.isAuthorOfPublication.latestForDiscovery5bd88a9c-e3d0-434a-a675-3221b2fde0e4

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
281.67 KB
Format:
Adobe Portable Document Format

Collections